Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử Toán vào lớp 10 lần 1 năm 2024 - 2025 phòng GDĐT Thái Hòa - Nghệ An

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi thử môn Toán tuyển sinh vào lớp 10 THPT lần 1 năm học 2024 – 2025 phòng Giáo dục và Đào tạo thị xã Thái Hòa, tỉnh Nghệ An; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề thi thử Toán vào lớp 10 lần 1 năm 2024 – 2025 phòng GD&ĐT Thái Hòa – Nghệ An : + Hai lớp 9A và 9B có tổng cộng 95 học sinh. Trong đợt quyên góp vở ủng hộ các bạn học sinh nghèo, bình quân mỗi bạn lớp 9A ủng hộ 3 quyển, mỗi bạn lớp 9B ủng hộ 4 quyển. Vì vậy cả hai lớp đã ủng hộ được 330 quyển. Tính số học sinh của mỗi lớp. + Các tia nắng mặt trời tạo với mặt đất một góc xấp xỉ bằng 31° và bóng của một cây trên mặt đất dài 20 m (xem hình vẽ bên). Tính chiều cao của cây (làm tròn kết quả đến mét). + Từ một điểm A nằm bên ngoài đường tròn (O), kẻ các tiếp tuyến AB, AC với đường tròn (B, C là các tiếp điểm). Trên cung nhỏ BC lấy điểm D sao cho CD BD tia AD cắt đường tròn (O) tại điểm thứ hai là E. Gọi I là trung điểm của DE và K là giao điểm của BC và DE. 1) Chứng minh ABOI là tứ giác nội tiếp. 2) Chứng minh OIB OAC và AK AI AD AE. 3) Qua D kẻ đường thẳng song song với AB, đường thẳng này cắt BC tại điểm M. Đường thẳng ME lần lượt cắt đường tròn (O) và đường thẳng AB tại các điểm P và N (P khác E). Chứng minh rằng APN ICB.

Nguồn: toanmath.com

Đọc Sách

Đề thi thử vào 10 năm 2020 - 2021 môn Toán trường Khánh Hòa - Thái Nguyên
THCS. giới thiệu đến quý thầy, cô giáo cùng các em học sinh đề thi thử tuyển sinh vào lớp 10 THPT năm học 2020 – 2021 môn Toán trường THPT Khánh Hòa, tỉnh Thái Nguyên; đề thi gồm có 01 trang với 10 bài toán dạng tự luận, thời gian làm bài thi là 120 phút, đề thi có lời giải chi tiết. Trích dẫn đề thi thử vào 10 năm 2020 – 2021 môn Toán trường Khánh Hòa – Thái Nguyên : + Người ta hòa lẫn 4kg chất lỏng I với 3kg chất lỏng II thì được một hỗn hợp có khối lượng riêng 700 kg/m3. Biết rằng khối lượng riêng của chất lỏng I lớn hơn khối lượng riêng của chất lỏng II là 200 kg/m3. Tính khối lượng riêng của mỗi chất lỏng. + Cho đường tròn (O) có hai đường kính AB, CD vuông góc với nhau. Gọi M là điểm tùy ý thuộc đoạn OC (M khác O và C). Tia BM cắt đường tròn (O) tại N . 1) Chứng minh AOMN là một tứ giác nội tiếp. 2) Chứng minh ND là tia phân giác của tam giác ANB. + Cho hàm số y = (3m – 2)x – 1 + m (m là tham số). 1) Tìm m để hàm số đồng biến trên R. 2) Tìm m để đồ thị hàm số cắt hai trục tọa độ Ox, Oy lần lượt tại A, B.
Đề thi thử vào 10 năm 2020 - 2021 môn Toán trường Ngô Quyền - Thái Nguyên
THCS. giới thiệu đến quý thầy, cô giáo cùng các em học sinh đề thi thử tuyển sinh vào lớp 10 THPT năm học 2020 – 2021 môn Toán trường THPT Ngô Quyền, tỉnh Thái Nguyên; đề thi gồm có 01 trang với 10 bài toán dạng tự luận, thời gian làm bài thi là 120 phút, đề thi có lời giải chi tiết. Trích dẫn đề thi thử vào 10 năm 2020 – 2021 môn Toán trường Ngô Quyền – Thái Nguyên : + Cho hình vuông ABCD có cạnh là 2 cm. Đường tròn tâm O ngoại tiếp hình vuông. Tính diện tích hình tròn tâm O? [ads] + Cho hai đường tròn (O) và (O’) cắt nhau tại A và B. Qua A vẽ hai cát tuyến CAD và EAF (C, E thuộc (O); D, F thuộc (O’)). Đường thẳng CE cắt đường thẳng DF tại P. Chứng minh tứ giác BEPF nội tiếp. + Cho tam giác ABC nhọn nội tiếp đường tròn (O), gọi BD, CE là các đường cao của tam giác ABC. Chứng minh OA vuông góc DE.
Đề thi thử vào 10 năm 2020 - 2021 môn Toán trường Gang Thép - Thái Nguyên
THCS. giới thiệu đến quý thầy, cô giáo cùng các em học sinh đề thi thử tuyển sinh vào lớp 10 THPT năm học 2020 – 2021 môn Toán trường THPT Gang Thép, tỉnh Thái Nguyên; đề thi gồm có 01 trang với 10 bài toán dạng tự luận, thời gian làm bài thi là 120 phút, đề thi có lời giải chi tiết. Trích dẫn đề thi thử vào 10 năm 2020 – 2021 môn Toán trường Gang Thép – Thái Nguyên : + Trên một vùng biển được xem như bằng phẳng và không có chướng ngại vật, vào lúc 6 giờ có một tàu cá đi thẳng qua tọa độ X theo hướng Từ Nam đến Bắc với vận tốc không đổi. Đến 7 giờ cùng ngày một tàu du lịch cũng đi thẳng qua tọa độ X theo hướng từ Đông sang Tây với vận tốc lớn hơn vận tốc tàu cá 12 km/h. Đến 8 giờ cùng ngày, khoảng cách giữa hai tàu là 60 km. Tính vận tốc của mỗi tàu. + Cho hai đường tròn (O1, R1) và (O2, R2) tiếp xúc ngoài tại E. Vẽ tiếp tuyến chung ngoài MN của hai đường tròn (M∈(O1); N∈(O2)), vẽ tiếp tuyến chung trong của hai đường tròn tại E cắt MN tại A. a) Chứng minh: tứ giác MAEO1 và tứ giác NAEO2 là các tứ giác nội tiếp. b) Tính MN theo R1, R2. [ads] + Cho tam giác nhọn ABC (AB < AC). Đường tròn tâm O đường kính BC cắt cạnh AC, AB lần lượt tại D và E. H là giao điểm của BD và CE. K là giao điểm của DE và AH. F là giao điểm của AH và BC. M là trung điểm của AH. Chứng minh rằng: MA2 = MK.MF.
Đề thi thử vào 10 môn Toán năm 2020 - 2021 trường THPT Lương Ngọc Quyến - Thái Nguyên
Ngày … tháng 06 năm 2020, trường THPT Lương Ngọc Quyến, tỉnh Thái Nguyên tổ chức kỳ thi thử tuyển sinh vào lớp 10 THPT năm học 2020 – 2021 môn thi Toán. Đề thi thử vào 10 môn Toán năm 2020 – 2021 trường THPT Lương Ngọc Quyến – Thái Nguyên gồm 01 trang với 10 bài toán dạng tự luận, mỗi bài toán tương ứng với 01 điểm, thời gian làm bài 120 phút (không kể thời gian giám thị coi thi phát đề), đề thi có đáp số và lời giải chi tiết. Trích dẫn đề thi thử vào 10 môn Toán năm 2020 – 2021 trường THPT Lương Ngọc Quyến – Thái Nguyên : + Cho tứ giác ABCD có AC vuông góc với BD, AC = 8cm, BD = 6cm. Gọi E, F, G, H theo thứ tự là trung điểm của AB, BC, CD, DA. Chứng minh rằng bốn điểm E, F, G, H thuộc cùng một đường tròn, tính bán kính của đường tròn đó. + Cho tam giác ABC cân tại A. Vẽ đường tròn (O;R) tiếp xúc với AB, AC tại B, C. Một điểm M bất kỳ nằm trên cạnh BC, vẽ đường thẳng vuông góc với OM cắt tia AB, AC lần lượt tại D, E. Chứng minh tam giác ODE cân. [ads] + Cho hai đường tròn (O;R) và (O’;R’) với R > R’ cắt nhau tại hai điểm A, B. Kẻ tiếp tuyến chung DE của hai đường tròn (D thuộc (O), E thuộc (O’) sao cho B gần tiếp tuyến hơn so với A. Gọi M là giao điểm của AB và DE. a. Chứng minh rằng MD^2 = ME^2 = MA.MB. b. Đường thẳng EB cắt AD tại P, đường thẳng DB cắt AE tại Q. Chứng minh rằng PQ song song với DE.