Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề khảo sát Toán 12 lần 1 năm 2019 - 2020 trường Thạch Thành 3 - Thanh Hóa

Ngày … tháng 11 năm 2019, trường THPT Thạch Thành 3 – Thanh Hóa tổ chức kỳ thi khảo sát chất lượng môn Toán lần thứ nhất đối với học sinh khối 12 của nhà trường trong giai đoạn giữa học kỳ 1 năm học 2019 – 2020. Đề khảo sát Toán 12 lần 1 năm học 2019 – 2020 trường THPT Thạch Thành 3 – Thanh Hóa có mã đề 001, đề gồm 06 trang với 50 câu hỏi và bài toán trắc nghiệm khách quan, học sinh có 90 phút để làm bài KSCL Toán 12. Trích dẫn đề khảo sát Toán 12 lần 1 năm 2019 – 2020 trường Thạch Thành 3 – Thanh Hóa : + Cho hình chóp tứ giác đều S.ABCD có cạnh đáy bằng a, cạnh bên hợp với đáy một góc 60°. Gọi M là điểm đối xứng với C qua D, N là trung điểm của SC, mặt phẳng (BMN) chia khối chóp S.ABCD thành hai phần. Gọi (H1) là phần đa diện chứa điểm S có thể tích V1, (H2) là phần đa diện còn lại có thể tích V2. Tính tỉ số thể tích V1/V2. + Một hộp có chứa 3 viên bi đỏ, 2 viên bi xanh và n viên bi vàng (các viên bi kích thước như nhau, n là số nguyên dương). Lấy ngẫu nhiên 3 viên bi từ hộp. Biết xác suất để trong ba viên bi lấy được có đủ 3 màu là 9/28. Tính xác suất P để trong 3 viên bi lấy được có ít nhất một viên bi xanh. [ads] + Cho phương trình: (cos4x – cos2x + 2(sinx)^2)/(cosx + sinx) = 0. Tính diện tích đa giác có các đỉnh là các điểm biểu diễn các nghiệm của phương trình trên đường tròn lượng giác. + Một công ty muốn làm một đường ống dẫn dầu từ kho A ở trên bờ biển đến một vị trí B trên một hòn đảo. Hòn đảo cách bờ biển 6km. Gọi C là điểm trên bờ sao cho BC vuông góc với bờ biển. Khoảng cách từ A đến C là 9km. Người ta cần xác định một vị trí D trên AC để lắp ống dẫn theo đường gấp khúc ADB. Tính khoảng cách AD để số tiền chi phí thấp nhất, biết rằng giá để lắp đặt mỗi km đường ống trên bờ là 100 000 000 đồng và dưới nước là 260 000 000 đồng. + Người ta muốn xây một cái bể hình hộp đứng có thể tích V = 18 (m3), biết đáy bể là hình chữ nhật có chiều dài gấp 3 lần chiều rộng và bể không có nắp. Hỏi cần xây bể có chiều cao h bằng bao nhiêu mét để nguyên vật liệu xây dựng là ít nhất (biết nguyên vật liệu xây dựng các mặt là như nhau)?

Nguồn: toanmath.com

Đọc Sách

Đề thi thử tốt nghiệp THPT năm 2022 môn Toán sở GDĐT Kiên Giang
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi thử tốt nghiệp THPT năm 2022 môn Toán sở Giáo dục và Đào tạo tỉnh Kiên Giang (mã đề 003); kỳ thi được diễn ra vào ngày 26 tháng 05 năm 2022. Trích dẫn đề thi thử tốt nghiệp THPT năm 2022 môn Toán sở GD&ĐT Kiên Giang : + Trong không gian Oxyz, cho mặt cầu (S): x2 + y2 + z2 = 9, điểm M(1;1;2) và mặt phẳng (P): x + y + z – 4 = 0. Gọi d là đường thẳng đi qua M, thuộc (P) và cắt (S) tại hai điểm A, B sao cho độ dài đoạn thẳng AB nhỏ nhất. Biết rằng d có một vectơ chỉ phương là u = (1;a;b). Giá trị của 5a + 3b bằng? + Cho hai số phức z và w. Biết rằng số phức z có phần thực và phần ảo đều khác 0 và thỏa mãn là số thực. Số phức w thỏa mãn. Giá trị nhỏ nhất của P = |z + w + 1 + 2i| bằng? + Cho hàm số y = f(x) liên tục, có đạo hàm trên R và thỏa mãn. Biết f(0) = 2. Tính thể tích khối tròn xoay do hình phẳng giới hạn bởi các đường y = f(x), trục hoành và hai đường thẳng x = 0 và x = 1 quay quanh trục Ox.
Đề thi thử tốt nghiệp THPT năm 2022 môn Toán sở GDĐT Gia Lai
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi thử tốt nghiệp THPT năm 2022 môn Toán sở Giáo dục và Đào tạo tỉnh Gia Lai (mã đề 101). Trích dẫn đề thi thử tốt nghiệp THPT năm 2022 môn Toán sở GD&ĐT Gia Lai : + Trong không gian Oxyz, cho điểm A(-1;1;-1) và mặt cầu (S): (x − 1)2 + (y − 2)2 + (z + 3)2 = 25. Mặt phẳng (P) đi qua A và cắt (S) theo giao tuyến là đường tròn (C). Gọi (M) là khối nón có đỉnh là tâm của mặt cầu và đáy là hình tròn giới hạn bởi (C). Tính bán kính của (C) khi thể tích của khối nón (V) đạt giá trị lớn nhất. + Cho hình chóp tứ giác đều S.ABCD có cạnh đáy bằng 2a. Mặt phẳng (a) chứa đường thẳng AB và đi qua trung điểm M của cạnh SC và cắt hình chóp theo thiết diện là một hình đa giác có chu vi bằng 7a. Tính thể tích của khối nón có đỉnh S và đáy là hình tròn giới hạn bởi đường tròn ngoại tiếp của tứ giác ABCD. + Cho hai hàm số y = f(x) = ax3 + bx2 + cx – 1/2 và y = g(x) = dx2 + ex + 1 trong đó a b c d e là những số thực. Biết rằng hai đồ thị đó cắt nhau tại các điểm có hoành độ lần lượt bằng -3; -1; 2 (tham khảo hình vẽ bên). Diện tích hình phẳng giới hạn bởi hai đường y = f(x) và y = g(x) bằng?
Đề thi thử tốt nghiệp THPT năm 2022 môn Toán sở GDĐT Cà Mau
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi thử tốt nghiệp THPT năm 2022 môn Toán sở Giáo dục và Đào tạo tỉnh Cà Mau; kỳ thi được diễn ra vào ngày 19 tháng 05 năm 2022; đề thi có đáp án mã đề 101 105 109 113 117 121 102 106 110 114 118 122 103 107 111 115 119 123 104 108 112 116 120 124. Trích dẫn đề thi thử tốt nghiệp THPT năm 2022 môn Toán sở GD&ĐT Cà Mau : + Trong không gian Oxyz cho mặt cầu (S) có phương trình 2 22 xyz xyz 2 4 2 40 và đường thẳng 2 2 14 x yz d. Hai mặt phẳng (P), (Q) chứa đường thẳng d và tiếp xúc với mặt cầu (S) lần lượt tại M, N. Gọi H abc là trung điểm của MN. Khi đó tích abc bằng? + Cho đồ thị hàm số bậc ba 3 2 1 3 y f x ax bx x c và đường thẳng y g x có đồ thị như hình vẽ sau: Biết AB = 5, diện tích hình phẳng giới hạn bởi các đồ thị hàm số y f x y g x và hai đường thẳng x = −1, x = 0 bằng? + Cho khối chóp S ABCD đáy ABCD là hình thang cân AB CD AB CD có hai đường chéo AC BD vuông góc và cắt nhau tại O 1 2 2 2 AB a C D. Biết SO vuông góc với đáy, hai mặt phẳng SAB và SCD vuông góc với nhau. Tính thể tích V của khối chóp S ABCD theo a.
Đề thi thử Toán TN THPT 2022 lần 2 trường THPT Quốc Tuấn - Hải Phòng
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi thử môn Toán ôn thi tốt nghiệp THPT năm học 2021 – 2022 lần 2 trường THPT Quốc Tuấn, thành phố Hải Phòng (mã đề 134). Trích dẫn đề thi thử Toán TN THPT 2022 lần 2 trường THPT Quốc Tuấn – Hải Phòng : + Một người lần đầu gửi vào ngân hàng 100 triệu đồng với kì hạn 3 tháng, lãi suất 2% một quý. Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi quý số tiền lãi sẽ được nhập vào gốc để tính lãi cho quý tiếp theo. Sau đúng 6 tháng, người đó gửi thêm 100 triệu đồng với kỳ hạn và lãi suất như trước đó. Tổng số tiền người đó nhận được 1 năm sau khi gửi tiền gần nhất với kết quả nào sau đây? A. 210 triệu. B. 220 triệu. C. 212 triệu. D. 216 triệu. + Cho hàm số bậc ba y f x có đồ thị C1 và hàm số bậc hai y g x có đồ thị C2. Biết C1 và C2 cắt nhau tại các điểm có hoành độ là 1 2 3 đồng thời C1 đi qua điểm A 1 7 và C2 đi qua điểm B 1 1. Tính diện tích hình phẳng giới hạn bởi hai đường C C 1 2. + Một hộp đựng 7 chiếc bút bi đen và 8 chiếc bút bi xanh. Lấy đồng thời và ngẫu nhiên hai chiếc bút từ hộp. Tính xác suất để 2 chiếc bút lấy được có cùng màu?