Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Các bài toán thực tế trong đề tuyển sinh vào 10 THPT

Tài liệu gồm 102 trang hướng dẫn phương pháp giải các bài toán thực tế trong đề tuyển sinh vào 10 THPT, đây là một dạng toán mới được đưa vào đề thi tuyển sinh vào lớp 10 môn Toán trong những năm gần đây, nhằm giúp học sinh khối THCS thấy được ứng dụng của toán học trong đời sống thực tiễn, tài liệu được biên soạn bởi tác giả Toán Họa. Khái quát nội dung tài liệu các bài toán thực tế trong đề tuyển sinh vào 10 THPT : CÁC DẠNG TOÁN Dạng toán 1 : Lãi suất ngân hàng. + Lãi đơn: Số tiền lãi chỉ tính trên số tiền gốc mà không tinh trên số tiền lãi do số tiền gốc sinh ra. + Lãi kép: Là số tiền lãi không chỉ tính trên số tiền gốc mà còn tính trên số tiền lãi do tiền gốc sinh ra thay đổi theo từng định kì. Dạng toán 2 : Giải hệ phương trình – giải phương trình. + Dạng toán giải toán bằng cách lập phương trình, hệ phương trình bậc nhất hai ẩn thường xuyên gặp trong những đề thi tuyển sinh lớp 10. Đây là dạng toán khó trong chương trình Trung học cơ sở. Học sinh thường xuyên quên và chưa biết áp dụng các kiến thức liên quan để giải toán. + Khi lập được hệ phương trình ta áp dụng các phương pháp đã học để giải tìm nghiệm của bài toán. + Phương pháp giải tổng quát của loại toán này là: ta lần lượt đặt từng thành phần là x, y và dựa vào các giả thiết của bài toán để lập hai phương trình thể hiện mối liên quan của các ẩn và từ đó giải để được x, y. Đối chiếu điều kiện của ẩn. + Hiển nhiên, nếu sau này kết hợp với kiến thức phương trình bậc hai, ta có những hệ phương trình cao hơn nhưng chung quy lại vẫn dùng những kiến thức cơ sở này. + Loại toán giải bằng cách lập hệ phương trình bậc nhất hai ẩn số có bốn dạng chính: dạng toán về số, dạng toán chuyển động, dạng toán năng suất, dạng toán ứng dụng hình học. [ads] Dạng toán 3 : Vận dụng trong hình học. + Vận dụng định lý Pytago. + Vận dụng kiến thức về hệ thức giữa cạnh và đường cao trong tam giác vuông. + Vận dụng hệ thức liên hệ giữa cạnh và góc trong tam giác vuông. Dạng toán 4 : Vận dụng các công thức hóa – lý. + Vận dụng các công thức Vật lý: I = U/R (I là cường độ dòng điện, U là hiệu điện thế, R là điện trở). + Vận dụng công thức Hóa học: nồng độ phần trăm, nồng độ mol, khối lượng riêng của dung dịch, đổi đơn vị. MỘT SỐ BÀI TẬP PHÂN DẠNG TỰ LUYỆN Dạng toán 1 : Bài toán kinh tế, tăng trưởng, tăng dân số, lãi suất, tiền điện, tiền taxi. Dạng toán 2 : Giải bài toán bằng cách lập phương trình dạng bậc nhất hoặc lập hệ phương trình. Dạng toán 3 : Giải bài toán bằng cách lập hệ phương trình, lập phương trình.

Nguồn: toanmath.com

Đọc Sách

7 chuyên đề luyện thi vào lớp 10 môn Toán - Diệp Tuân
Tài liệu gồm 185 trang, được biên soạn bởi thầy giáo Diệp Tuân, tuyển tập 7 chuyên đề luyện thi vào lớp 10 môn Toán. Chuyên đề 1. Căn bậc hai và căn bậc ba. Chuyên đề 2. Hàm số bậc nhất và hàm số bậc hai. Chuyên đề 3. Phương trình và hệ phương trình. Chuyên đề 4. Phương trình chứa tham số m. Chuyên đề 5. Giải toán bằng cách lập phương trình và hệ phương trình.
Phân dạng các bài toán trong đề tuyển sinh lớp 10 môn Toán (2023 - 2024)
Tài liệu gồm 236 trang, được biên soạn bởi quý thầy, cô giáo nhóm Word – Giải – Tách Chuyên Đề Vào 10 Môn Toán, phân dạng và hướng dẫn giải chi tiết các bài toán trong các đề thi tuyển sinh vào lớp 10 THPT môn Toán năm học 2023 – 2024. Chuyên đề 1. Căn thức và các bài toán liên quan. Chuyên đề 2. Giải bài toán bằng cách lập phương trình hoặc hệ phương trình. Chuyên đề 3. Hàm số. Chuyên đề 4. Hệ phương trình. Chuyên đề 5. Phương trình. Chuyên đề 6. Hình học. Chuyên đề 7. Bất đẳng thức. Chuyên đề 8. Giá trị của biểu thức. Chuyên đề 9. Số học.
Hệ thống các khái niệm cơ bản và định lý hình học THCS (hình học phẳng)
Tài liệu gồm 56 trang, hệ thống các khái niệm cơ bản và định lý hình học THCS (hình học phẳng). ĐẶC ĐIỂM CHUNG CỦA BỘ MÔN HÌNH HỌC: Kiến thức về bộ môn toán nói chung, bộ môn hình học nói riêng được xây dựng theo một hệ thống chặt chẽ: Từ Tiên đề đến Định nghĩa các Khái niệm – Định lý – và Hệ quả. Đối với những bài toán thông thường, học sinh chỉ cần vận dụng một vài khái niệm, định lý, hệ quả để giải. Đối với những bài toán khó, để xác định hướng giải (cũng như để giải được) học sinh cần nắm được không những hệ thống kiến thức (lý thuyết) mà còn cần nắm chắc cả hệ thống bài tập, để vận dụng chúng vào giải bài tập mới. Do đó để giải tốt các bài toán hình học, học sinh cần: a/ Nắm chắc hệ thống kiến thức về lý thuyết. b/ Nắm chắc hệ thống bài tập. c/ Biết cách khai thác giả thiết nhằm đọc hết những thông tin tiềm ẩn trong giả thiết, nắm chắc, nắm đầy đủ cái ta có, suy ra cái ta sẽ có (càng nhiều càng tốt). Từ đó giúp ta xây dựng hướng giải, vẽ được đường phụ cũng như giúp ta có thể giải được bài toán bằng nhiều cách. Nội dung ở cột Hình vẽ, khai thác ở bảng tổng hợp dưới đây nhằm giúp học sinh tập dượt suy ra cái ta sẽ có ở nội dung Nếu có ….. Ta có ….. d/ Biết cách tìm hiểu câu hỏi (kết luận): + Nắm chắc các phương pháp chứng minh từng dạng toán (trong đó cần hết sức lưu ý định nghĩa các khái niệm). + Biết đưa bài toán về trường hợp tương tự. + Nắm được ý nghĩa của câu hỏi để có thể chuyển sang dạng tương đương. Ví dụ để chứng minh biểu thức M không phụ thuộc vị trí của cát tuyến d khi d quay quanh điểm O ta cần chứng minh M = hằng số. Tài liệu này tổng hợp, hệ thống các khái niệm và định lý (trong phần hình học phẳng) trong chương trình hình học trung học cơ sở bằng cách tổng hợp tất cả các khái niệm, định lý (liên quan đến từng khái niệm) về một mối. Trên cơ sở đó giúp học sinh ôn tập một cách tổng hợp các khái niệm, định lý để vận dụng vào giải toán. Đề nghị các trường triển khai đến học sinh, giáo viên để nghiên cứu vận dụng. Các khái niệm, định lý trong tài liệu này được chia ra các phần chính như sau: 1/ ĐƯỜNG THẲNG – ĐOẠN THẲNG – TIA – GÓC – QUAN HỆ GIỮA ĐƯỜNG VUÔNG GÓC VÀ ĐƯỜNG XIÊN, ĐƯỜNG XIÊN VÀ HÌNH CHIẾU. 2/ TAM GIÁC – TAM GIÁC CÂN – TAM GIÁC VUÔNG – TAM GIÁC VUÔNG CÂN – TAM GIÁC ĐỀU. 3/ TỨ GIÁC – HÌNH THANG – HÌNH BÌNH HÀNH – HÌNH CHỮ NHẬT – HÌNH THOI – HÌNH VUÔNG – ĐA GIÁC. 4/ ĐƯỜNG TRÒN. Nội dung tài liệu được thiết kế theo dạng bảng gồm 4 cột: + Khái niệm: Nêu tên khái niệm. Trong từng khái niệm có ghi chú khái niệm đó được học ở khối lớp nào trong chương trình hình học THCS để học sinh vận dụng phù hợp với khối lớp đang học. + Nội dung: Nêu định nghĩa khái niệm, các định lý, nhận xét liên quan đến khái niệm đó. + Hình vẽ – Khai thác: – Hình vẽ minh họa. – Giúp học sinh tìm tòi, khai thác dưới dạng Nếu có ….. thì ta có 1) – 2) – 3) … để tăng thêm dữ liệu phục vụ cho giải bài toán liên quan đến khái niệm đó. + Cách chứng minh: Nếu các cách chứng minh hình học. VD chứng minh hai đường thẳng song song. Đây chỉ là tài liệu tham khảo, rất mong sự đóng góp ý kiến của đội ngũ giáo viên để Phòng Giáo dục có thể điều chỉnh, hoàn thiện tài liệu này.
Phương pháp Đirichlê và ứng dụng - Nguyễn Hữu Điển
Tài liệu gồm 184 trang, được biên soạn bởi tác giả Nguyễn Hữu Điển, hướng dẫn ứng dụng phương pháp Đirichlê trong giải toán. Nguyên lý những cái lồng và các chú thỏ đã được biết đến từ rất lâu. Ngay trong chương trình phổ thông cơ sở chúng ta cũng đã làm quen với phương pháp giải toán này. Thực ra nguyên lý này mang tên nhà bác học người Đức Pête Gutxtap Legien Dirichlet (1805 – 1859). Nguyên lý phát biểu rất đơn giản: Nếu chúng ta nhốt thỏ vào các lồng mà số lồng ít hơn số thỏ, thì thể nào cũng có một lồng nhốt ít nhất hai con thỏ. Chỉ bằng nguyên lý đơn giản như vậy hàng loạt các bài toán đã được giải. Cuốn sách được biên soạn lại theo từng chủ đề có liên quan đến nguyên lý, mỗi cách giải trong ví dụ của từng chương là áp dụng điển hình nguyên lý Đirichlê. Bài tập giải trước có liên quan đến bài giải sau nên cần lưu ý khi đọc sách. Với mong muốn cùng bạn đọc thảo luận một phương pháp chứng minh toán học và hy vọng cung cấp một tài liệu bổ ích cho các thầy cô giáo và các em học sinh ham mê tìm tòi trong toán học, tác giả mạnh dạn biên soạn cuốn sách này. MỤC LỤC : Chương 1. Nguyên lý Đirichlê và ví dụ. 1.1. Nguyên lý Đirichlê. 1.2. Ví dụ. 1.3. Bài tập. Chương 2. Số học. 2.1. Phép chia số tự nhiên. 2.2. Ví dụ. 2.3. Bài tập. Chương 3. Dãy số. 3.1. Nguyên lý Đirichlê cho dãy số vô hạn. 3.2. Ví dụ. 3.3. Bài tập. Chương 4. Hình học. 4.1. Ví dụ. 4.2. Bài tập. Chương 5. Mở rộng nguyên lý Đirichlê. 5.1. Nguyên lý Đirichlê mở rộng. 5.2. Ví dụ. 5.3. Bài tập. Chương 6. Bài tập số học nâng cao. 6.1. Định lý cơ bản của số học. 6.2. Ví dụ. 6.3. Bài tập. Chương 7. Bài tập dãy số nâng cao. 7.1. Ví dụ. 7.2. Bài tập. Chương 8. Số thực với tập trù mật. 8.1. Tập trù mật. 8.2. Ví dụ. 8.3. Bài tập. Chương 9. Những ứng dụng khác của nguyên lý Đirichlê. 9.1. Xấp xỉ một số thực. 9.2. Bài tập. Chương 10. Nguyên lý Đirichlê cho diện tích. 10.1. Phát biểu nguyên lý Đirichlê cho diện tích. 10.2. Ví dụ. 10.3. Bài tập. Chương 11. Toán học tổ hợp. 11.1. Ví dụ. 11.2. Bài tập. Chương 12. Một số bài tập hình học khác. 12.1. Ví dụ. 12.2. Bài tập. Chương 13. Một số đề thi vô địch. Chương 14. Bài tập tự giải. Chương 15. Lời giải và gợi ý.