Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi chọn HSG lớp 11 môn Toán năm học 2019 2020 trường THPT thị xã Quảng Trị

Nội dung Đề thi chọn HSG lớp 11 môn Toán năm học 2019 2020 trường THPT thị xã Quảng Trị Bản PDF Ngày 12 tháng 06 năm 2020, trường THPT thị xã Quảng Trị tổ chức kỳ thi chọn học sinh giỏi văn hóa lớp 11 môn Toán năm học 2019 – 2020. Đề thi chọn HSG Toán lớp 11 năm học 2019 – 2020 trường THPT thị xã Quảng Trị gồm 01 trang với 04 bài toán dạng tự luận, thời gian làm bài thi là 180 phút, đề thi có lời giải chi tiết và thang chấm điểm. Trích dẫn đề thi chọn HSG Toán lớp 11 năm học 2019 – 2020 trường THPT thị xã Quảng Trị : + Một tổ gồm 10 học sinh gồm 6 học sinh nam và 4 học sinh nữ trong đó có hai học sinh nữ tên Trang và Thủy. Xếp ngẫu nhiên 10 học sinh trên thành một hàng ngang. Tính xác suất để xếp được một hàng ngang mà hai học sinh nữ Trang và Thủy luôn đứng cạnh nhau, đồng thời các học sinh nữ còn lại không đứng cạnh nhau và cũng không đứng cạnh Trang và Thủy. + Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại A, góc ABC = 30 độ và BC = 2a. Gọi H là hình chiếu vuông góc của A lên BC. Biết hai mặt phẳng (SHA) và (SBC) cùng vuông góc với mặt phẳng (ABC), đồng thời SA tạo với mặt phẳng (ABC) một góc bằng 60 độ. a) Tính góc tạo bởi SA và mặt phẳng (SBC). b) Tính khoảng cách từ B đến mặt phẳng (SAC) theo a. [ads] + Trong mặt phẳng Oxy, cho tam giác ABC vuông tại A. Gọi H là hình chiếu vuông góc của A trên BC, các điểm M, N lần lượt là trung điểm của HB và HC; điểm K là trực tâm tam giác AMN. a) Gọi I là trung điểm của AH. Chứng minh rằng K là trung điểm của IH. b) Tìm tọa độ điểm A; biết M(2;-1), K(-1/2;1/2) và điểm A nằm trên đường thẳng x + 2y + 4 = 0 đồng thời điểm A có tung độ âm.

Nguồn: sytu.vn

Đọc Sách

Đề học sinh giỏi Toán 11 năm 2020 - 2021 trường Phùng Khắc Khoan - Hà Nội
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề học sinh giỏi Toán 11 năm học 2020 – 2021 trường THPT Phùng Khắc Khoan, huyện Thạch Thất, thành phố Hà Nội; đề gồm 01 trang với 06 bài toán dạng tự luận, thời gian học sinh làm bài thi là 150 phút, đề thi có lời giải chi tiết. Trích dẫn đề học sinh giỏi Toán 11 năm 2020 – 2021 trường Phùng Khắc Khoan – Hà Nội : + Cho một đa giác lồi (H) có 30 đỉnh A1A2…A30. Gọi X là tập hợp các tam giác có 3 đỉnh là 3 đỉnh của (H). Chọn ngẫu nhiên 2 tam giác trong X. Tính xác suất để chọn được 2 tam giác là các tam giác có 1 cạnh là cạnh của đa giác (H). + Cho hình chóp S.ABCD có đáy ABCD là hình bình hành, (a) là mặt phẳng thay đổi qua AB và cắt các cạnh SC, SD lần lượt tại M, N (M khác S, C và N khác S, D). Gọi K là giao điểm của hai đường thẳng AN và BM. Chứng minh rằng biểu thức T = AB/MN – BC/SK có giá trị không đổi. + Cho hình lăng trụ tam giác ABC.A’B’C’ có đáy là tam giác đều cạnh a, các mặt bên đều là hình vuông. Gọi M, N, E lần lượt là trung điểm của các cạnh AB, AA’, A’C’. Tính diện tích thiết diện khi cắt lăng trụ ABC.A’B’C’ bởi mặt phẳng (MNE).
Đề Olympic 27 tháng 4 Toán 11 năm 2020 - 2021 sở GDĐT Bà Rịa - Vũng Tàu
Thứ Sáu ngày 12 tháng 03 năm 2021, sở Giáo dục và Đào tạo tỉnh Bà Rịa – Vũng Tàu tổ chức kỳ thi Olympic 27 tháng 4 môn Toán lớp 11 năm học 2020 – 2021. Đề Olympic 27 tháng 4 Toán 11 năm 2020 – 2021 sở GD&ĐT Bà Rịa – Vũng Tàu gồm 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 180 phút.
Đề HSG cấp trường Toán 11 năm 2020 - 2021 trường Yên Phong 2 - Bắc Ninh
Thứ Tư ngày 10 tháng 03 năm 2021, trường THPT Yên Phong số 2, tỉnh Bắc Ninh tổ chức kỳ thi chọn học sinh giỏi cấp trường môn Toán lớp 11 năm học 2020 – 2021. Đề HSG cấp trường Toán 11 năm 2020 – 2021 trường Yên Phong 2 – Bắc Ninh gồm 02 trang với 05 bài toán dạng tự luận, thời gian làm bài 150 phút, đề thi có lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề HSG cấp trường Toán 11 năm 2020 – 2021 trường Yên Phong 2 – Bắc Ninh : + Trong hệ tọa độ Oxy, cho hình thoi ABCD cạnh AC có phương trình là, hai đỉnh B, D lần lượt thuộc các đường thẳng. Biết rằng diện tích hình thoi bằng 75, đỉnh A có hoành độ âm. Tìm toạ độ các đỉnh hình thoi. + Cho hình chóp S.ABCD có đáy ABCD là hình thang, đáy lớn BC = 2a đáy bé AD, AB. Mặt bên SAD là tam giác đều, M là một điểm di động trên AB, mặt phẳng (P) đi qua M và song song với SA, BC. a) Tìm thiết diện của hình chóp khi cắt bởi (P). Thiết diện là hình gì? b) Tính diện tích thiết diện theo a, b và x AM x b. Tìm x theo b để diện tích thiết diện lớn nhất. + Tam giác mà ba đỉnh của nó là ba trung điểm ba cạnh của tam giác ABC được gọi là tam giác trung bình của tam giác ABC. Ta xây dựng dãy các tam giác sao cho là một tam giác đều cạnh bằng 3 và với mỗi số nguyên dương n ≥ 2, tam giác A B C là tam giác trung bình của tam giác A B C n n n. Với mỗi số nguyên dương n, kí hiệu Sn tương ứng là diện tích hình tròn ngoại tiếp tam giác A B C n n n. Tính tổng 1 2 n S S S S.
Đề chọn HSG Toán 11 vòng 1 năm 2020 - 2021 trường THPT Trần Nguyên Hãn - Hải Phòng
Đề chọn HSG Toán 11 vòng 1 năm 2020 – 2021 trường THPT Trần Nguyên Hãn – Hải Phòng được biên soạn theo hình thức đề thi tự luận, đề gồm 01 trang với 06 bài toán, thời gian học sinh làm bài thi là 180 phút, đề thi có lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề chọn HSG Toán 11 vòng 1 năm 2020 – 2021 trường THPT Trần Nguyên Hãn – Hải Phòng : + Trong mặt phẳng Oxy, cho hình bình hành ABCD, hình chiếu của điểm D lên AB, BC lần lượt là M(-2;2), N(2;-2). Biết rằng đường thẳng DB có phương trình là 3x – 5y + 1 = 0 và hoành độ điểm B lớn hơn 0. Tìm tọa độ điểm B. + Từ các chữ số 1; 2; 3; 4; 5; 6; 7; 8; 9 lập được bao nhiêu số có 4 chữ số đôi một khác nhau và chia hết cho 11 đồng thời tổng của 4 chữ số của nó cũng chia hết cho 11. + Cho hình chóp S.ABCD, đáy ABCD là hình bình hành, M là trung điểm của SA và E là trung điểm của SB; P thuộc cạnh SC sao cho SC = 3SP. 1) Dựng giao điểm của DB với mặt phẳng (MPE). 2) Gọi N là một điểm thuộc cạnh SB, mặt phẳng (MNP) cắt SD tại Q. Chứng minh SB/SN + SD/SQ = 5.