Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Tách phân dạng toán đề thi TN THPT môn Toán (2017 2023) phần Giải tích

Nội dung Tách phân dạng toán đề thi TN THPT môn Toán (2017 2023) phần Giải tích Bản PDF - Nội dung bài viết Sản phẩm Tách phân dạng toán đề thi TN THPT môn Toán (2017-2023) phần Giải tíchCHUYÊN ĐỀ ỨNG DỤNG ĐẠO HÀMBÀI 1 - SỰ BIẾN THIÊN CỦA HÀM SỐBÀI 2 - CỰC TRỊ CỦA HÀM SỐCHUYÊN ĐỀ SỐ PHỨCBÀI 1 - ĐỊNH NGHĨA SỐ PHỨCBÀI 2 - CÁC PHÉP TOÁN SỐ PHỨCBÀI 3 - PHƯƠNG TRÌNH BẬC HAI Sản phẩm Tách phân dạng toán đề thi TN THPT môn Toán (2017-2023) phần Giải tích Được biên soạn bởi thầy giáo Dương Minh Hùng, tài liệu này bao gồm 559 trang tách phân dạng toán các đề thi tốt nghiệp THPT môn Toán từ năm 2017 đến năm 2023 phần Giải tích. Tài liệu cung cấp đáp án và lời giải chi tiết để giúp học sinh hiểu rõ bài tập. Bên dưới là một số chuyên đề quan trọng trong phần Giải tích: CHUYÊN ĐỀ ỨNG DỤNG ĐẠO HÀM BÀI 1 - SỰ BIẾN THIÊN CỦA HÀM SỐ Trong chuyên đề này, học sinh sẽ học về sự biến thiên của hàm số. Bao gồm cách tính đơn điệu của các hàm số chỉ dựa trên công thức, đồ thị hoặc biểu thức đạo hàm. BÀI 2 - CỰC TRỊ CỦA HÀM SỐ Chuyên đề này tập trung vào việc tìm cực trị của hàm số. Học sinh sẽ thực hành tìm điểm cực trị dựa trên đồ thị, biểu thức đạo hàm, hoặc các điều kiện đặc biệt. ... CHUYÊN ĐỀ SỐ PHỨC BÀI 1 - ĐỊNH NGHĨA SỐ PHỨC Chuyên đề này giới thiệu về số phức và các tính chất cơ bản của nó. Bao gồm cách thực hiện phép toán cơ bản với số phức và ứng dụng của nó trong các bài toán. BÀI 2 - CÁC PHÉP TOÁN SỐ PHỨC Trong phần này, học sinh sẽ học cách thực hiện các phép toán phức tạp với số phức, bao gồm việc xác định các yếu tố của số phức và giải các bài toán liên quan. BÀI 3 - PHƯƠNG TRÌNH BẬC HAI Chuyên đề này tập trung vào việc giải phương trình bậc hai, sử dụng các phương pháp như định lí Viet và ứng dụng trong các bài toán khác nhau liên quan đến đề tài này. Đây là một số chuyên đề quan trọng trong phần Giải tích của sách. Việc học và ôn tập những nội dung này sẽ giúp học sinh nắm vững kiến thức và kỹ năng cần thiết để vượt qua kỳ thi THPT môn Toán.

Nguồn: sytu.vn

Đọc Sách

Đề thi thử tốt nghiệp THPT 2022 môn Toán lần 2 sở GDĐT Bình Phước
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi thử tốt nghiệp THPT năm 2022 môn Toán lần 2 sở Giáo dục và Đào tạo UBND tỉnh Bình Phước; kỳ thi được diễn ra vào ngày … tháng 06 năm 2022. Trích dẫn đề thi thử tốt nghiệp THPT 2022 môn Toán lần 2 sở GD&ĐT Bình Phước : + Trong không gian Oxyz, cho mặt phẳng (R): x + y – 2z + 2 = 0 và đường thẳng Delta1. Đường thẳng Delta2 nằm trong mặt phẳng (R) đồng thời cắt và vuông góc với đường thẳng Delta1 có phương trình là? + Cho hình nón có chiều cao bằng 3a biết rằng khi cắt hình nón đã cho bởi một mặt phẳng đi qua đỉnh hình nón và cách tâm của đáy hình nón một khoảng bằng a, thiết diện thu được là một tam giác vuông. Tính thể tích của khối nón được giới hạn bởi hình nón đã cho? + Cho a là số thực, phương trình z2 + (a – 2)z + 2a – 3 = 0 có hai nghiệm z1 và z2. Gọi M và N là điểm biểu diễn của z1 và z2 trên mặt phẳng tọa độ. Biết tam giác OMN có một góc bằng 120°, tính tổng các giá trị của a?
Đề thi thử tốt nghiệp THPT năm 2022 môn Toán sở GDĐT Hậu Giang
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi thử kỳ thi tốt nghiệp THPT năm 2022 môn Toán sở Giáo dục và Đào tạo tỉnh Hậu Giang; đề thi mã đề 101 gồm 08 trang với 50 câu hỏi và bài toán hình thức trắc nghiệm, thời gian làm bài 90 phút (không kể thời gian phát đề), cấu trúc đề thi bám sát đề minh họa tốt nghiệp THPT 2022 môn Toán của Bộ Giáo dục và Đào tạo. Trích dẫn đề thi thử tốt nghiệp THPT năm 2022 môn Toán sở GD&ĐT Hậu Giang : + Tại điểm tiêm ngừa vaccine phòng chống dịch Covid-19 của một cơ sở Y tế có 5 người gồm bác sĩ và y tá. Trong đó có đúng một cặp vợ chồng. Xếp ngẫu nhiên 5 người ngồi vào một dãy 5 ghế thẳng hàng (mỗi người ngồi một ghế) để thực hiện công việc. Tính xác suất để hai bạn A và B là cặp vợ chồng, không ngồi cạnh nhau. + Trong không gian với hệ trục toạ độ Oxyz cho mặt cầu S tâm I(1;1;1) và đi qua điểm A(0;2;0). Xét khối chóp đều A.BCD có B C D thuộc mặt cầu S. Khi khối tứ diện ABCD có thể tích lớn nhất, mặt phẳng BCD có phương trình dạng x by cz d 0. Tính giá trị của b c d. + Cho hàm số y f x có đạo hàm, liên tục trên và có 3 cực trị, thoả mãn 4 3 2 1 3 4 2 f x f x x x x. Gọi g x là hàm số bậc hai đi qua 3 điểm cực trị của y f x. Tính diện tích hình phẳng giới hạn bởi các đồ thị của y f x và y g x.
Đề thi thử Toán TN THPT 2022 lần 3 trường THPT Trần Quốc Tuấn - Quảng Ngãi
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi thử tốt nghiệp THPT môn Toán lần 3 năm học 2021 – 2022 trường THPT Trần Quốc Tuấn, tỉnh Quảng Ngãi; đề thi có đáp án mã đề 001 002 003 004 005 006 007 008. Trích dẫn đề thi thử Toán TN THPT 2022 lần 3 trường THPT Trần Quốc Tuấn – Quảng Ngãi : + Cho đồ thị hàm số bậc bốn y f x và parabol y g x như hình vẽ. Biết A B là hai giao điểm và C D lần lượt là các điểm cực đại của đồ thị hàm số y f x và y g x thỏa mãn AB 5 CD 2. Gọi 1 2 3 S S S là diện tích các hình phẳng được tô đậm và 1 25 8 S. Giá trị 2 3 10 3 S S bằng? + Trong không gian Oxyz cho điểm A 2 1 3 đường thẳng 2 5 3 1 2 2 x y z và mặt cầu 2 2 2 S x y z 1 1 25. Mặt phẳng thay đổi luôn đi qua A và song song với. Trong trường hợp cắt mặt cầu S theo một đường tròn có chu vi nhỏ nhất thì có phương trình ax by cz 9 0. Tính giá trị của biểu thức S a b c. + Cho hàm số y f x có đồ thị gồm 2 nhánh parabol hợp lại như hình vẽ. Có bao nhiêu giá trị nguyên của tham số m để hàm số 2 3 3 5 x m y f x có 4 điểm cực trị?
Đề thi thử Toán TN THPT 2022 lần 2 trường THPT Nguyễn Gia Thiều - Hà Nội
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi thử môn Toán ôn thi tốt nghiệp THPT năm học 2021 – 2022 lần 2 trường THPT Nguyễn Gia Thiều, thành phố Hà Nội (mã đề 275). Trích dẫn đề thi thử Toán TN THPT 2022 lần 2 trường THPT Nguyễn Gia Thiều – Hà Nội : + Trong không gian Oxyz, cho biết có hai mặt cầu có tâm nằm trên đường thẳng 1 2 2 1 1 x y z d tiếp xúc đồng thời với hai mặt phẳng 2 2 1 0 x y z và 2 3 6 2 0 x y z. Gọi R1 và R2 (R R 1 2) là bán kính của hai mặt cầu đó. Tỉ số 1 2 R R bằng? + Cho hình chóp S ABCD có đáy ABCD là hình bình hành có diện tích bằng 2 12a; khoảng cách từ S tới mặt phẳng ABCD bằng 4a. Gọi N là trọng tâm tam giác ACD; gọi G và T lần lượt là trung điểm các cạnh SB và SC. Mặt phẳng NGT chia khối chóp thành hai khối đa diện. Thể tích của khối đa diện chứa đỉnh S bằng? + Cho hàm số y f x có đạo hàm liên tục trên và có đồ thị hàm số y f x như hình vẽ bên. Biết f b 0 hỏi đồ thị hàm số y f x cắt trục hoành tại nhiều nhất bao nhiêu điểm?