Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học kì 1 (HK1) lớp 10 môn Toán năm 2022 2023 trường THPT Yên Mô B Ninh Bình

Nội dung Đề học kì 1 (HK1) lớp 10 môn Toán năm 2022 2023 trường THPT Yên Mô B Ninh Bình Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề kiểm tra chất lượng cuối học kỳ 1 môn Toán lớp 10 năm học 2022 – 2023 trường THPT Yên Mô B, tỉnh Ninh Bình; đề thi được biên soạn theo cấu trúc 70% trắc nghiệm + 30% tự luận, thời gian làm bài 90 phút (không kể thời gian giao đề). Trích dẫn Đề học kỳ 1 Toán lớp 10 năm 2022 – 2023 trường THPT Yên Mô B – Ninh Bình : + Một kĩ sư thiết kế đường dây điện từ vị trí A đến vị B và từ vị trí B đến vị trí C trên cù lao (như hình bên). Tiền công thiết kế mỗi ki-lô-mét đường dây từ A đến B là 2 triệu đồng, mỗi ki-lô-mét đường dây từ B đến C là 5 triệu đồng. Biết AH km CH km 15 3 và tổng tiền công thiết kế là 47 triệu đồng. Tính tổng số kilô-mét đường dây điện đã thiết kế? + Trong dịp Tết năm nay, một cửa hàng bánh kẹo dự định kinh doanh bánh thương hiệu X với hai loại bánh kí hiệu là loại I (cao cấp), loại II (bình dân). Số vốn để nhập không vượt quá 80 triệu đồng. Giá nhập vào và dự kiến bán ra như sau: Giá Bánh loại I Bánh loại II Giá mua vào 200 nghìn đồng/1 hộp 100 nghìn đồng/1 hộp Giá bán ra 240 nghìn đồng/1 hộp 125 nghìn đồng/1 hộp Cửa hàng khảo sát được tổng nhu cầu của thị trường sẽ̉ không vượt quá 500 hộp cả hai loại bánh. Nếu bán hết số hàng sẽ nhập, số tiền lãi lớn nhất mà cửa hàng có thể thu được là A. 16 triệu đồng. B. 17 triệu đồng. C. 18 triệu đồng. D. 20 triệu đồng. + Đứng ở vị trí A trên bờ biển, bạn An đo được góc nghiêng so với bờ biển tới một vị trí C trên đảo là 0 75 . Sau đó di chuyển dọc bờ biển đến vị trí B cách A một khoảng 1 ki-lô-mét và đo được góc nghiêng so với bờ biển tới vị trí C đã chọn là 0 80 (hình vẽ tham khảo). Khoảng cách từ vị trí C trên đảo tới bờ biển tính theo đơn vị mét, gần nhất với giá trị nào sau đây?

Nguồn: sytu.vn

Đọc Sách

Đề thi học kì 1 Toán 10 năm 2019 - 2020 trường THPT Hiệp Bình - TP HCM
Kỳ thi cuối học kì 1 môn Toán 10 là kỳ thi rất quan trọng đối với các em học sinh lớp 10, điểm số của kỳ thi này tác động lớn đến điểm trung bình môn Toán 10 nói riêng và xếp loại học lực nói chung. Để giúp các em đạt được điểm số cao trong kì thi HK1 Toán 10 sắp tới, chọn lọc và chia sẻ đến các em bản PDF đề thi + đáp án/đáp số + lời giải chi tiết đề thi học kì 1 Toán 10 năm học 2019 – 2020 trường THPT Hiệp Bình, thành phố Hồ Chí Minh. Trích dẫn đề thi học kì 1 Toán 10 năm 2019 – 2020 trường THPT Hiệp Bình – TP HCM : + Một nhà máy trang bị hai máy công cụ chuyên sản xuất bạc đạn xe máy. Ngày thứ nhất cả hai máy làm được 930 bạc đạn. Ngày thứ hai, do máy thứ nhất tăng năng suất 18%, máy thứ hai tăng năng suất 15% nên cả hai máy làm được 1083 bạc đạn. Hỏi trong ngày thứ nhất mỗi máy công cụ làm được bao nhiêu bạc đạn xe máy? + Chứng minh rằng với mọi số thực x, y, z ta luôn có: x2 + y2 + z2 >= 2(xy + yz – zx). Dấu đẳng thức xảy ra khi nào? + Lập bảng biến thiên và vẽ đồ thị của hàm số: y = -x2 + 2x + 3.
Đề thi học kì 1 Toán 10 năm 2019 - 2020 trường THPT Nguyễn Hữu Thọ - TP HCM
Kỳ thi cuối học kì 1 môn Toán 10 là kỳ thi rất quan trọng đối với các em học sinh lớp 10, điểm số của kỳ thi này tác động lớn đến điểm trung bình môn Toán 10 nói riêng và xếp loại học lực nói chung. Để giúp các em đạt được điểm số cao trong kì thi HK1 Toán 10 sắp tới, chọn lọc và chia sẻ đến các em bản PDF đề thi + đáp án/đáp số + lời giải chi tiết đề thi học kì 1 Toán 10 năm học 2019 – 2020 trường THPT Nguyễn Hữu Thọ, thành phố Hồ Chí Minh. Trích dẫn đề thi học kì 1 Toán 10 năm 2019 – 2020 trường THPT Nguyễn Hữu Thọ – TP HCM : + Một doanh nghiệp tư nhân chuyên kinh doanh xe gắn máy các loại. Hiện nay doanh nghiệp đang tập trung chiến lược vào kinh doanh một loại xe honda với chi phí mua vào một chiếc là 27 (triệu đồng) và bán ra với giá là 31 triệu đồng. Với giá bán này thì số lượng xe mà khách hàng sẽ mua trong một năm là 600 chiếc. Nhằm mục tiêu đẩy mạnh hơn nữa lượng tiêu thụ dòng xe đang ăn khách này, doanh nghiệp dự định giảm giá bán và ước tính rằng nếu giảm 1 triệu đồng mỗi chiếc xe thì số lượng xe bán ra trong một năm là sẽ tăng thêm 200 chiếc. Vậy doanh nghiệp phải định giá bán mới là bao nhiêu để sau khi thực hiện giảm giá, lợi nhuận thu được sẽ cao nhất? + Cho hình vuông ABCD tâm O, có cạnh là 2a. Tính: a) BC.BD. b)OA(AB + BC). + Tìm GTNN của hàm số y = (4x + 1)(4 + x)/x với x > 0.
Đề thi học kì 1 Toán 10 năm 2019 - 2020 trường THPT Bách Việt - TP HCM
Kỳ thi cuối học kì 1 môn Toán 10 là kỳ thi rất quan trọng đối với các em học sinh lớp 10, điểm số của kỳ thi này tác động lớn đến điểm trung bình môn Toán 10 nói riêng và xếp loại học lực nói chung. Để giúp các em đạt được điểm số cao trong kì thi HK1 Toán 10 sắp tới, chọn lọc và chia sẻ đến các em bản PDF đề thi + đáp án/đáp số + lời giải chi tiết đề thi học kì 1 Toán 10 năm học 2019 – 2020 trường THPT Bách Việt, thành phố Hồ Chí Minh. Trích dẫn đề thi học kì 1 Toán 10 năm 2019 – 2020 trường THPT Bách Việt – TP HCM : + Viết phương trình dạng y = ax + b của đường thẳng đi qua hai điểm A(2;1) và B(-1;-1). + Cho parabol (P): y = x2 – 2x – 3. a. Khảo sát và vẽ (P). b. Tìm m để đường thẳng d: y = 2m + 5 cắt (P) tại hai điểm phân biệt. + Viết mệnh đề phủ định của các mệnh đề sau.
Đề thi học kì 1 Toán 10 năm 2019 - 2020 trường THPT Trần Khai Nguyên - TP HCM
Kỳ thi cuối học kì 1 môn Toán 10 là kỳ thi rất quan trọng đối với các em học sinh lớp 10, điểm số của kỳ thi này tác động lớn đến điểm trung bình môn Toán 10 nói riêng và xếp loại học lực nói chung. Để giúp các em đạt được điểm số cao trong kì thi HK1 Toán 10 sắp tới, chọn lọc và chia sẻ đến các em bản PDF đề thi + đáp án/đáp số + lời giải chi tiết đề thi học kì 1 Toán 10 năm học 2019 – 2020 trường THPT Trần Khai Nguyên, thành phố Hồ Chí Minh. Trích dẫn đề thi học kì 1 Toán 10 năm 2019 – 2020 trường THPT Trần Khai Nguyên – TP HCM : + Viết phương trình của parabol (P): y = ax2 + bx – 3 biết (P) có trục đối xứng là x = -4/3 và đi qua điểm M(-2;1). + Cho tam giác ABC có AB = 5, BC = 7, CA = 8. Tính AB.AC và góc BAC. + Tìm giá trị của tham số m để phương trình √(x2 + 2x + 2m) = 2x + 1 có 2 nghiệm phân biệt.