Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử Toán vào lớp 10 năm 2022 - 2023 phòng GDĐT Thạch Hà - Hà Tĩnh

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi thử môn Toán tuyển sinh vào lớp 10 THPT năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Thạch Hà, tỉnh Hà Tĩnh; kỳ thi được diễn ra vào ngày 28 tháng 04 năm 2022. Trích dẫn đề thi thử Toán vào lớp 10 năm 2022 – 2023 phòng GD&ĐT Thạch Hà – Hà Tĩnh : + Nhằm động viên khen thưởng các em có thành tích học sinh giỏi nhà trường tổ chức cho các em đi tham quan, ngoại khóa tại một khu du lịch với giá vé ban đầu mỗi người là 375 000 đồng. Để ghi nhận sự cố gắng của các em học sinh và giáo viên bồi dưỡng, công ty du lịch đã giảm giá vé 10% cho mỗi giáo viên và 30% cho mỗi học sinh. Tổng chi phí của chuyến đi sau khi giảm giá là 12 487 500 đồng. Tính số học sinh, số giáo viên tham gia chuyến đi biết số học sinh gấp 4 lần số giáo viên. + Cho tam giác MNP vuông tại M, đường cao MH. Biết HN = 4cm, HP = 16cm. Tính MN; MH và độ dài đường tròn ngoại tiếp tam giác MNP. + Cho đường tròn tâm O, một điểm A nằm ngoài đường tròn. Từ A kẻ đường thẳng đi qua tâm O, cắt đường tròn tại hai điểm M và N (M nằm giữa A và N). Kẻ đường thẳng thứ hai đi qua A, cắt đường tròn tại hai điểm phân biệt C, D (C nằm giữa A và D, C khác M). Đường thẳng vuông góc với AM tại A cắt đường thẳng NC tại B, đường thẳng BM cắt đường tròn tại điểm thứ hai là E. a) Chứng minh tứ giác ABCM là tứ giác nội tiếp đường tròn. b) Chứng minh DE vuông góc với AN.

Nguồn: toanmath.com

Đọc Sách

Đề thi vào 10 chuyên môn Toán (không chuyên) năm 2021 - 2022 sở GDĐT Lâm Đồng
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi vào 10 chuyên môn Toán (không chuyên) năm 2021 – 2022 sở GD&ĐT Lâm Đồng; kỳ thi được diễn ra vào ngày 11 tháng 06 năm 2021. Trích dẫn đề thi vào 10 chuyên môn Toán (không chuyên) năm 2021 – 2022 sở GD&ĐT Lâm Đồng : + Một người dự định đi xe gắn máy từ A đến B với vận tốc không đổi. Nhưng thực tế vì có việc gấp, người đó đã tăng vận tốc thêm 5 km/h so với dự định nên đến B sớm hơn 15 phút. Tính vận tốc người đó dự định đi từ A đến B, biết quãng đường AB dài 70km. + Cho C là một điểm nằm trên nửa đường tròn tâm O đường kính AB (C khác A, C khác B). Gọi H là hình chiếu vuông góc của C trên AB, D là điểm đối xứng với A qua C, I là trung điểm của CH, J là trung điểm của DH và E là giao điểm của HD và BI. Chứng minh: HE.HD = HC2. + Hình nón có thể tích là 960 cm3 và chiều cao là 8 cm. Tính diện tích xung quanh của hình nón.
Đề thi thử vào 10 môn Toán năm 2021 - 2022 trường Khương Thượng - Hà Nội
Chủ Nhật ngày 06 tháng 06 năm 2021, trường THCS Khương Thượng, quận Đống Đa, thành phố Hà Nội tổ chức kỳ thi thử tuyển sinh vào lớp 10 THPT môn Toán năm học 2021 – 2022. Đề thi thử vào 10 môn Toán năm 2021 – 2022 trường THCS Khương Thượng – Hà Nội gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 90 phút (theo cấu trúc mới của sở GD&ĐT Hà Nội); đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề thi thử vào 10 môn Toán năm 2021 – 2022 trường THCS Khương Thượng – Hà Nội : + Một chiếc nón lá hình nón có đường sinh bằng 20 cm, đường kính bằng 30 cm. Người ta dùng hai lớp lá để phủ lên bề mặt xung quanh của nón. Tính diện tích lá cần dùng cho một chiếc nón đó. + Cho Parabol 2 Pyx và đường thẳng d y xm 5 1 với m là tham số. a) Tìm tọa độ giao điểm của (d) và (P) khi m = 5. b) Tìm m để (d) cắt (P) tại hai điểm có hoành độ 1 2 x x thỏa mãn 1 2 2x x. + Cho đường tròn (O). Từ điểm A nằm ngoài đường tròn vẽ hai tiếp tuyến AB, AC tới đường tròn (O) với B, C là các tiếp điểm. Qua điểm A vẽ đường thẳng d không đi qua tâm cắt đường tròn tại P, Q (P nằm giữa A và Q; P và Q cùng thuộc nửa mặt phẳng bờ là đường thẳng AO không chứa điểm B). Gọi I là giao điểm của AO và BC. 1) Chứng minh: 4 điểm A, B, O, C cùng thuộc một đường tròn. 2) Chứng minh: 2 AB AI AO. Từ đó suy ra: AI.AO = AP.AQ. 3) Vẽ đường thẳng đi qua P và song song BQ cắt đường thẳng AB, BC theo thứ tự tại M, G. Chứng minh: P là trung điểm của MG.
Đề thi thử Toán vào lớp 10 lần 3 năm 2021 - 2022 trường Thái Thịnh - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi thử Toán vào lớp 10 lần 3 năm học 2021 – 2022 trường THCS Thái Thịnh, quận Đống Đa, thành phố Hà Nội; đề thi gồm 01 trang với 04 bài toán dạng tự luận, thời gian làm bài 90 phút (theo cấu trúc mới của sở GD&ĐT thành phố Hà Nội); đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm; kỳ thi được diễn ra vào thứ Sáu ngày 04 tháng 06 năm 2021. Trích dẫn đề thi thử Toán vào lớp 10 lần 3 năm 2021 – 2022 trường Thái Thịnh – Hà Nội : + Một quả bóng đá tiêu chuẩn sử dụng tại các giải thi đấu chuyên nghiệp có đường kính 22cm. Khi quả bóng được bơm căng đúng tiêu chuẩn thì thể tích của quả bóng là bao nhiêu? + Trong mặt phẳng tọa độ Oxy cho đường thẳng (d): y 4x m 1 và parabol (P): 2 y x. Tìm tất cả các giá trị của m để (d) cắt (P) tại hai điểm Ax y Bx y 11 2 2 thỏa mãn 1 2 12 y y xx 7. + Cho đường tròn (O) và điểm M nằm bên ngoài đường tròn (O). Qua M kẻ hai tiếp tuyến MA, MB tới đường tròn (O) (A và B là các tiếp điểm). MO cắt AB tại điểm H. 1) Chứng minh bốn điểm M, A, O, B cùng thuộc một đường tròn. 2) Chứng minh AH MA = OA MO. 3) Gọi K là trung điểm của AH. Đường thẳng vuông góc với OK tại K cắt tia MA tại điểm C và cắt MB tại điểm D. Chứng minh góc OCK = góc OBA và D là trung điểm của MB.
Đề thi thử vào 10 môn Toán năm 2021 - 2022 trường THCS Mỹ Đình 2 - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi thử vào 10 môn Toán năm 2021 – 2022 trường THCS Mỹ Đình 2 – Hà Nội; đề thi gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 90 phút (theo cấu trúc mới của sở GD&ĐT thành phố Hà Nội), đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm; kỳ thi được diễn ra vào Chủ Nhật ngày 30 tháng 05 năm 2021. Trích dẫn đề thi thử vào 10 môn Toán năm 2021 – 2022 trường THCS Mỹ Đình 2 – Hà Nội : + Một hình trụ có chiều cao bằng đường kính đáy, diện tích toàn phần của hình trụ là 2 48 π cm. Tính thể tích hình trụ đó. + Cho parabol (P) 1 2 2 y x và đường thẳng (d) y m xm (1) (m là tham số, x là ẩn số). a) Chứng minh (d) luôn cắt (P) tại hai điểm phân biệt với mọi m. b) Gọi 1 x 2 x là hoành độ giao điểm của (d) và (P). Tìm m để 1 2 x x 2. + Cho nửa đường tròn (O R) đường kính BC. Lấy điểm D và E di động trên nửa đường tròn sao cho EOD = 90 (D thuộc CE, E thuộc BD); BD cắt CE tại H, các tia BE và CD cắt nhau tại A. a) Chứng minh tứ giác ADHE nội tiếp đường tròn. b) Chứng minh OD là tiếp tuyến của đường tròn ngoại tiếp tứ giác ADHE . c) Kẻ đường thẳng vuông góc với AB tại B và đường thẳng vuông góc với AC tại C. Gọi K là giao điểm hai đường thẳng này và I là trung điểm AK. Tính số đo góc BIC. d) Tìm vị trí điểm D và E trên nửa đường tròn (O R) để AB AC lớn nhất.