Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề KSCL đầu năm năm học 2017 2018 lớp 9 môn Toán trường THCS Cẩm Vũ Hải Dương

Nội dung Đề KSCL đầu năm năm học 2017 2018 lớp 9 môn Toán trường THCS Cẩm Vũ Hải Dương Bản PDF - Nội dung bài viết Đề KSCL đầu năm năm học 2017-2018 môn Toán lớp 9 trường THCS Cẩm Vũ Hải Dương Đề KSCL đầu năm năm học 2017-2018 môn Toán lớp 9 trường THCS Cẩm Vũ Hải Dương Đề khảo sát chất lượng đầu năm học 2017-2018 môn Toán lớp 9 trường THCS Cẩm Vũ - Cẩm Giàng, Hải Dương đã được công bố, bao gồm 6 bài toán tự luận, đều có lời giải chi tiết để học sinh tham khảo và tự kiểm tra kiến thức. Một trong số bài toán trong đề đó là: Bạn Nam đi xe đạp từ nhà đến Thành phố Hải Dương với vận tốc trung bình 15km/h. Lúc về bạn đi với vận tốc 12km/h, nên thời gian đi ít hơn thời gian về 12 phút. Hỏi độ dài quãng đường từ nhà bạn Nam đến thành phố Hải Dương là bao nhiêu? Đề thi Toán trong kỳ khảo sát chất lượng đầu năm cho học sinh lớp 9 tại trường THCS Cẩm Vũ đã thu hút sự quan tâm của học sinh cũng như giáo viên, đồng thời giúp học sinh rèn luyện kỹ năng giải quyết vấn đề, tư duy logic và tính toán chính xác.

Nguồn: sytu.vn

Đọc Sách

Đề khảo sát chất lượng Toán 9 năm 2021 trường THCS Lê Ngọc Hân - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề khảo sát chất lượng Toán 9 năm học 2020 – 2021 trường THCS Lê Ngọc Hân, quận Hai Bà Trưng, thành phố Hà Nội; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm; kỳ thi được diễn ra vào ngày 21 tháng 05 năm 2021. Trích dẫn đề khảo sát chất lượng Toán 9 năm 2021 trường THCS Lê Ngọc Hân – Hà Nội : + Trên mặt phẳng tọa độ xOy, cho Parabol 2 Pyx và đường thẳng 63dyxm. a. Tìm tọa độ giao điểm của P và d khi 2m. b. Tìm m để P cắt d tại hai điểm phân biệt 1122 AxyBxy thỏa mãn 120yx. + Cho đường tròn (O), từ điểm A ở ngoài đường tròn vẽ hai tiếp tuyến AB và AC với (O) (B, C là các tiếp điểm). OA cắt BC tại E. 1. Chứng minh tứ giác ABOC nội tiếp. 2. Chứng minh: BC vuông góc với OA và BABERAE. 3. Gọi I là trung điểm của BE, đường thẳng qua I và vuông góc với OI cắt các tia AB, AC theo thứ tự tại D và F. Chứng minh ΔDOF cân và F là trung điểm AC. + Giải bài toán bằng cách lập phương trình hoặc hệ phương trình: Một đơn vị vận tải dự định sử dụng một lượng xe có trọng tải như nhau để chuyên chở 420 tấn vật liệu xây dựng. Tuy nhiên khi làm việc, có 2 xe không hoạt động, do đó mỗi xe còn lại phải chở thêm 7 tấn nữa mới hoàn thành công việc đúng hạn được giao. Hỏi ban đầu, đội vận tải dự định sử dụng bao nhiêu xe và mỗi xe dự định chở bao nhiêu tấn vật liệu? (Biết các xe đều chở khối lượng vật liệu xay dựng như nhau).
Đề khảo sát chất lượng Toán 9 năm 2020 - 2021 trường THCS Ái Mộ - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề khảo sát chất lượng Toán 9 năm học 2020 – 2021 trường THCS Ái Mộ, quận Long Biên, thành phố Hà Nội; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm; kỳ thi được diễn ra vào ngày 26 tháng 05 năm 2021. Trích dẫn đề khảo sát chất lượng Toán 9 năm 2020 – 2021 trường THCS Ái Mộ – Hà Nội : + Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình: Để ủng hộ các gia đình gặp khó khăn tại một số địa phương do ảnh hưởng của dịch Covid-19, một số tổ chức thiện nguyện đã dự định chở 180 tấn hàng chia đều bằng một số xe cùng loại. Lúc khởi hành, có 2 xe bị hỏng nên mỗi xe phải chở thêm 3 tấn so với dự định. Hỏi ban đầu có bao nhiêu xe tham gia chở hàng? + Bán kính Trái Đất là 6370 km. Biết rằng 29% diện tích bề mặt trái đất không bị bao phủ bởi nước gồm núi, sa mạc, cao nguyên, đồng bằng và các địa hình khác. Tính diện tích bề mặt Trái Đất bị bao phủ bởi nước (làm tròn đến hai chữ số thập phân, lấy π = 3,14). + Cho nửa đường tròn tâm O đường kính AB R 2 và C D là hai điểm di động trên nửa đường tròn sao cho C thuộc cung AD và COD = 60 (C AD B). Gọi M là giao điểm của tia AC và BD, N là giao điểm của AD và BC. Gọi H và I lần lượt là trung điểm của CD và MN. a) Chứng minh tứ giác CMDN nội tiếp. b) Kẻ AP CD BQ CD P Q CD. Chứng minh CP DQ và AP BQ R 3. c) Chứng minh rằng ba điểm H I và O thẳng hàng. Tìm giá trị lớn nhất của diện tích tam giác MCD theo R khi C D di chuyển trên nửa đường tròn thỏa mãn điều kiện đề bài.
Đề khảo sát Toán 9 năm 2020 - 2021 trường THCS Ngô Sĩ Liên - Hà Nội
Thứ Hai ngày 31 tháng 05 năm 2021, trường THCS Ngô Sĩ Liên, quận Hoàn Kiếm, thành phố Hà Nội tổ chức kỳ thi khảo sát chất lượng (viết tắt: KSCL) môn Toán lớp 9 năm học 2020 – 2021, nhằm giúp các em học sinh lớp 9 rèn luyện để chuẩn bị cho kỳ thi tuyển sinh vào lớp 10 môn Toán năm học 2021 – 2022 do sở Giáo dục và Đào tạo thành phố Hà Nội tổ chức. Đề khảo sát Toán 9 năm 2020 – 2021 trường THCS Ngô Sĩ Liên – Hà Nội gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 120 phút, đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề khảo sát Toán 9 năm 2020 – 2021 trường THCS Ngô Sĩ Liên – Hà Nội : + Cho đường tròn (O) đường kính AB, lấy C thuộc đường tròn (O) sao cho AC < CB. Kẻ đường kính CD. Tiếp tuyến tại A và tiếp tuyến C của đường tròn (O) cắt nhau tai E. Tiếp tuyến tại C và tiếp tuyến B của đường tròn (O) cắt nhau tai F. 1) Chứng minh bốn điểm O, A, E, C thuộc một đường tròn. 2) Chứng minh EO // CB. 3) Đoạn thẳng DF cắt đường tròn (O) tại J. Đường thẳng AJ cắt đường thẳng BC tại điểm H và cắt đường thẳng DC tại điểm G. Chứng minh G là trọng tâm của tam giác ABC. + Với a, b, c là độ dài ba cạnh của một tam giác có chu vi bằng 2. Chứng minh rằng: ab bc ca 1. + Cho parabol 2 P y x và đường thẳng 2 d y mx m. a) Chứng minh (d) luôn cắt (P) tại hai điểm phân biệt với mọi giá trị của tham số m. b) Gọi giao điểm của (d) và (P) là 𝐴(𝑥𝐴; 𝑦𝐴),𝐵(𝑥𝐵; 𝑦𝐵). Hãy các xác định giá trị của m để yA + yB < -6.
Đề khảo sát chất lượng Toán 9 lần 3 năm 2021 trường THCS Phương Liệt - Hà Nội
  Nhằm chuẩn bị cho kỳ thi tuyển sinh vào lớp 10 THPT năm học 2021 – 2022 do sở GD&ĐT Hà Nội tổ chức, thứ Bảy ngày 29 tháng 05 năm 2021, trường THCS Phương Liệt, quận Thanh Xuân, thành phố Hà Nội tổ chức kỳ thi khảo sát chất lượng môn Toán lớp 9 năm học 2020 – 2021 lần thứ ba. Đề khảo sát chất lượng Toán 9 lần 3 năm 2021 trường THCS Phương Liệt – Hà Nội gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 120 phút (không kể thời gian phát đề), đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề khảo sát chất lượng Toán 9 lần 3 năm 2021 trường THCS Phương Liệt – Hà Nội : + Cho hàm số y m x 1 3 m 1 có đồ thị là đường thẳng (d). a) Tìm m để đường thẳng (d) đi qua điểm M(1; 4). Với m vừa tìm được, hãy cho biết đường thẳng (d) có song song với đường thẳng y x 1 không? Vì sao? b) Tìm tất cả các giá trị m để đường thẳng (d) tiếp xúc với đường tròn (O; 1) trong đó O là gốc tọa độ. + Cho nửa đường tròn tâm (O), đường kính AB = 2R. Vẽ bán kính OC vuông góc với AB. Lấy điểm K bất kì thuộc cung AC, kẻ KH vuông góc với AB tại H. Tia AC cắt HK tại I, tia BI cắt nửa tròn tại điểm E. 1) Chứng minh tứ giác BHIC nội tiếp. 2) Chứng minh AI.AC = AH. AB và tổng AI.AC + BI.BE không đổi. 3) Chứng minh HE vuông góc với CE và tâm đường tròn ngoại tiếp tam giác CEH nằm trên đường thẳng cố định khi K di động trên cung AC. + Với a, b, c là các số dương thỏa mãn điều kiện abc 3. Tìm giá trị lớn nhất của biểu thức Q a bc b ca c a.