Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề tuyển sinh môn Toán (chuyên Tin) năm 2022 2023 sở GD ĐT Hà Nội

Nội dung Đề tuyển sinh môn Toán (chuyên Tin) năm 2022 2023 sở GD ĐT Hà Nội Bản PDF - Nội dung bài viết Đề thi tuyển sinh môn Toán (chuyên Tin) năm 2022 2023 sở GD ĐT Hà Nội Đề thi tuyển sinh môn Toán (chuyên Tin) năm 2022 2023 sở GD ĐT Hà Nội Các thầy cô và các em học sinh lớp 9 thân mến, Sytu xin giới thiệu đến quý vị đề thi chính thức kỳ thi tuyển sinh vào lớp 10 môn Toán (chuyên Tin) năm học 2022 – 2023 của sở Giáo dục và Đào tạo thành phố Hà Nội. Kỳ thi sẽ diễn ra vào thứ Hai ngày 20 tháng 06 năm 2022. Dưới đây là trích dẫn các câu hỏi từ đề tuyển sinh lớp 10 môn Toán (chuyên Tin) năm 2022 – 2023 sở GD&ĐT Hà Nội: 1. Tìm tất cả các số nguyên dương a, b và c sao cho các phương trình x2 – 2ax + b = 0, x2 – 2bx + c = 0 và x2 – 2cx + a = 0 đều có nghiệm là các số nguyên dương. 2. Trong tam giác ABC với AB < AC, nội tiếp đường tròn (O). Ba đường cao AD, BE và CF cùng đi qua điểm H. Gọi I và K lần lượt là trung điểm của các đoạn thẳng EF và BC. a) Chứng minh AI/AK = HI/HK. b) Chứng minh đường thẳng AH là tiếp tuyến của đường tròn ngoại tiếp tam giác IHK. c) Gọi P là chân đường vuông góc kẻ từ điểm H đến đường thẳng EF. Chứng minh đường thẳng DP song song với đường thẳng AI. 3. Trên bảng có hai số tự nhiên m và n. An và Bình chơi trò chơi loại bỏ số như sau: Mỗi lượt chơi, một người chơi chọn một số trên bảng để loại bỏ và thay thế bằng hiệu không âm của số đó với một ước số tự nhiên bất kỳ của số đó. Hai bạn chơi lần lượt và người không thể thực hiện lượt chơi là người thua cuộc. Biết rằng An chơi lượt đầu tiên, hãy chỉ ra chiến thuật để An chiến thắng với m = 2022 và n = 2023, cũng như với m = 2022 và n = 1981.

Nguồn: sytu.vn

Đọc Sách

Đề tuyển sinh lớp 10 THPT môn Toán năm 2022 - 2023 sở GDĐT Ninh Bình
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Ninh Bình; kỳ thi được diễn ra vào sáng thứ Năm ngày 09 tháng 06 năm 2022. Trích dẫn đề tuyển sinh lớp 10 THPT môn Toán năm 2022 – 2023 sở GD&ĐT Ninh Bình : + Giải bài toán bằng cách lập phương trình hoặc hệ phương trình: Theo kế hoạch, một xưởng may phải may 280 bộ quần áo. Khi thực hiện, mỗi ngày xưởng may được nhiều hơn 5 bộ quần áo so với số bộ phải may trong một ngày theo kế hoạch. Vì thế xưởng đã hoàn thành công việc sớm một ngày so với kế hoạch. Hỏi theo kế hoạch ban đầu, mỗi ngày xưởng phải may bao nhiêu bộ quần áo? + Một hình nón có bán kính đáy r = 3cm và đường cao h = 4cm. Tính thể tích của hình nón (lấy pi = 3,14). + Cho đường tròn tâm O, đường kính AB. Điểm C nằm trên đường tròn sao cho CA > CB. Từ điểm O vẽ đường thẳng vuông góc với đường thẳng AC, đường thẳng này cắt tiếp tuyến tại A của đường tròn tâm O tại điểm M và cắt đường thẳng AC tại điểm I. Đường thẳng MB cắt đường tròn tâm O tại điểm thứ hai Q (Q khác B). a) Chứng minh tứ giác AlQM là tứ giác nội tiếp. b) Chứng minh rằng MQ.MB = MO.MI.
Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2022 - 2023 trường chuyên Sơn La
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 môn Toán (chuyên) năm học 2022 – 2023 trường THPT chuyên Sơn La, tỉnh Sơn La; đề thi dành cho thí sinh thi vào các lớp 10 chuyên Toán và chuyên Tin học; kỳ thi được diễn ra vào thứ Ba ngày 07 tháng 06 năm 2022. Trích dẫn đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2022 – 2023 trường chuyên Sơn La : + Tìm giá trị của tham số k để đường thẳng (d1): y = -x + 2 cắt đường thẳng (d2): y = 2x + 3 – k tại một điểm nằm trên trục hoành. + Trong mặt phẳng tọa độ Oxy, cho parabol (P): y = x2 và đường thẳng (d): y = 2mx – m + 1 (với m là tham số). Tìm tất cả các giá trị của m để (d) cắt (P) tại hai điểm phân biệt có hoành độ x1 và x2 thỏa mãn |x1 – x2| > 3. + Cho tam giác ABC có ba góc nhọn (AB > AC) nội tiếp đường tròn (O; R). Đường cao AH của tam giác ABC cắt đường tròn (O; R) tại điểm thứ hai là D. Kẻ DM vuông góc với AB tại M. a) Chứng minh tứ giác BMHD nội tiếp được đường tròn và DA là tia phân giác của góc MDC. b) Từ D kẻ DN vuông góc với đường thẳng AC tại N. Chứng minh ba điểm M, H, N thẳng hàng. c) Cho P = AB2 + AC2 + CD2 + BD2. Tính giá trị biểu thức P theo R.
Đề tuyển sinh lớp 10 THPT môn Toán năm 2022 - 2023 sở GDĐT Hưng Yên
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Hưng Yên; đề thi mã đề 117 gồm 04 trang với 50 câu hỏi và bài toán hình thức trắc nghiệm khách quan, thời gian học sinh làm bài thi là 90 phút (không kể thời gian giám thị phát đề).
Đề tuyển sinh lớp 10 môn Toán (chung) năm 2022 - 2023 sở GDĐT Bà Rịa - Vũng Tàu
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chính thức tuyển sinh vào lớp 10 môn Toán (chung) năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Bà Rịa – Vũng Tàu; kỳ thi được diễn ra vào thứ Tư ngày 08 tháng 06 năm 2022. Trích dẫn đề tuyển sinh lớp 10 môn Toán (chung) năm 2022 – 2023 sở GD&ĐT Bà Rịa – Vũng Tàu : + Một người đi xe máy từ địa điểm A đến địa điểm B trên quãng đường 100 km. Khi từ B về A người đó đã giảm vận tốc 10 km/h so với lúc đi nên thời gian lúc về nhiều hơn thời gian lúc đi là 30 phút. Tính vận tốc của người đó lúc đi. + Từ điểm M nằm bên ngoài đường tròn (O), kẻ hai tiếp tuyến MA, MB của (O) (A và B là hai tiếp điểm). Một đường thẳng qua M và không đi qua O cắt (O) tại hai điểm C và D (C nằm giữa M, D và A thuộc cung nhỏ CD). a) Chứng minh tứ giác AMBO nội tiếp. b) Chứng minh MA2 = MC.MD. c) Gọi I là giao điểm của AB và MO. Chứng minh tứ giác CDOI nội tiếp. d) Kẻ đường thẳng qua D vuông góc với MO cắt (O) tại E khác D. Chứng minh ba điểm C, I, E thẳng hàng. + Với các số thực x, y, z thỏa mãn x >= 1, y >= 1, z >= 1 và x2 + 2y2 + 3z2 = 15. Tìm giá trị nhỏ nhất của biểu thức P = x + y + z.