Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi chọn HSG Toán 11 cấp trường năm 2017 - 2018 trường Lý Thái Tổ - Bắc Ninh

Đề thi chọn HSG Toán 11 cấp trường năm 2017 – 2018 trường Lý Thái Tổ – Bắc Ninh gồm 1 trang với 5 bài toán tự luận, thời gian làm bài 120 phút, kỳ thi được diễn ra vào ngày 14 tháng 04 năm 2018 nhằm phát hiện, tuyển chọn các em học sinh giỏi môn Toán khối 11 để bồi dưỡng chuẩn bị cho các cuộc thi HSG Toán cấp tỉnh, quốc gia … đề thi có lời giải chi tiết . Trích dẫn đề thi chọn HSG Toán 11 cấp trường năm 2017 – 2018 : + Cho hình vuông ABCD cạnh a. Gọi O là giao điểm của hai đường chéo. Trên nửa đưởng thẳng Ox vuông góc với mặt phẳng chứa hình vuông, ta lấy điểm S sao cho góc SCB = 60 độ. Tính khoảng cách giữa hai đường thẳng BC và SD. [ads] + Cho hàm số y = x^3/3 – x^2 + x + m có đồ thị là (C). Tìm tất cả các giá trị của m để tiếp tuyến của đồ thị (C) tại điểm M có xM = 3 chắn hai trục tọa độ một tam giác có diện tích bằng 2. + Cho a, b, c, d là các số thực thoả mãn a^2 + b^2 = 25; c^2 + d^2 = 16 và ac + bd ≥ 20. Tìm giá trị lớn nhất của biểu thức: P = a + d.

Nguồn: toanmath.com

Đọc Sách

Đề Olympic tháng 4 lớp 11 môn Toán năm 2020 2021 sở GD ĐT TP Hồ Chí Minh
Nội dung Đề Olympic tháng 4 lớp 11 môn Toán năm 2020 2021 sở GD ĐT TP Hồ Chí Minh Bản PDF Sáng thứ Bảy ngày 17 tháng 04 năm 2021, sở Giáo dục và Đào tạo thành phố Hồ Chí Minh tổ chức kỳ thi Olympic tháng 4 cấp THPT mở rộng môn Toán lớp 11 năm học 2020 – 2021. Đề Olympic tháng 4 Toán lớp 11 năm 2020 – 2021 sở GD&ĐT TP Hồ Chí Minh gồm 01 trang với 05 bài toán tự luận, thời gian làm bài 120 phút.
Đề học sinh giỏi cấp tỉnh lớp 11 môn Toán chuyên năm 2020 2021 sở GD ĐT Lạng Sơn
Nội dung Đề học sinh giỏi cấp tỉnh lớp 11 môn Toán chuyên năm 2020 2021 sở GD ĐT Lạng Sơn Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề thi chọn học sinh giỏi cấp tỉnh môn Toán lớp 11 chuyên năm học 2020 – 2021 sở Giáo dục và Đào tạo tỉnh Lạng Sơn; đề thi gồm 01 trang với 05 bài toán dạng tự luận, thang điểm 20, thời gian học sinh làm bài thi là 180 phút (không kể thời gian giáo viên coi thi phát đề), đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm.
Đề Olympic lớp 11 môn Toán năm 2020 2021 liên cụm trường THPT Hà Nội
Nội dung Đề Olympic lớp 11 môn Toán năm 2020 2021 liên cụm trường THPT Hà Nội Bản PDF Thứ Bảy ngày 20 tháng 03 năm 2021, liên cụm trường THPT: Thanh Xuân – Cầu Giấy – Mê Linh – Sóc Sơn – Đông Anh (thành phố Hà Nội) tổ chức kỳ thi Olympic Toán lớp 11 năm học 2020 – 2021. Đề Olympic Toán lớp 11 năm 2020 – 2021 liên cụm trường THPT – Hà Nội được biên soạn theo dạng đề thi tự luận, đề gồm 01 trang với 05 bài toán, thời gian làm bài 150 phút, đề thi có lời giải chi tiết. Trích dẫn đề Olympic Toán lớp 11 năm 2020 – 2021 liên cụm trường THPT – Hà Nội : + Cho tam giác ABC cân tại A. Gọi AH là đường cao xuất phát từ đỉnh A. Biết độ dài các đoạn thẳng BC, AH, AB theo thứ tự tạo thành một cấp số nhân. Tìm công bội của cấp số nhân đó. + Trong hộp có 25 tấm thẻ giống nhau được đánh số theo thứ tự từ 1 đến 25. Rút ngẫu nhiên ba tấm thẻ từ trong hộp. 1) Có bao nhiêu cách để rút được ít nhất hai tấm thẻ mang số lẻ? 2) Tính xác suất để trong ba số ghi trên ba tấm thẻ rút được không có hai số nào là hai số tự nhiên liên tiếp. +  Gọi là mặt phẳng thay đổi và luôn đi qua trung điểm Q của đoạn thẳng AG. Mặt phẳng cắt các tia lần lượt tại các điểm M, N, P (không trùng với điểm A).  Tìm giá trị lớn nhất của biểu thức T.
Đề học sinh giỏi lớp 11 môn Toán năm 2020 2021 trường Phùng Khắc Khoan Hà Nội
Nội dung Đề học sinh giỏi lớp 11 môn Toán năm 2020 2021 trường Phùng Khắc Khoan Hà Nội Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề học sinh giỏi Toán lớp 11 năm học 2020 – 2021 trường THPT Phùng Khắc Khoan, huyện Thạch Thất, thành phố Hà Nội; đề gồm 01 trang với 06 bài toán dạng tự luận, thời gian học sinh làm bài thi là 150 phút, đề thi có lời giải chi tiết. Trích dẫn đề học sinh giỏi Toán lớp 11 năm 2020 – 2021 trường Phùng Khắc Khoan – Hà Nội : + Cho một đa giác lồi (H) có 30 đỉnh A1A2…A30. Gọi X là tập hợp các tam giác có 3 đỉnh là 3 đỉnh của (H). Chọn ngẫu nhiên 2 tam giác trong X. Tính xác suất để chọn được 2 tam giác là các tam giác có 1 cạnh là cạnh của đa giác (H). + Cho hình chóp S.ABCD có đáy ABCD là hình bình hành, (a) là mặt phẳng thay đổi qua AB và cắt các cạnh SC, SD lần lượt tại M, N (M khác S, C và N khác S, D). Gọi K là giao điểm của hai đường thẳng AN và BM. Chứng minh rằng biểu thức T = AB/MN – BC/SK có giá trị không đổi. + Cho hình lăng trụ tam giác ABC.A’B’C’ có đáy là tam giác đều cạnh a, các mặt bên đều là hình vuông. Gọi M, N, E lần lượt là trung điểm của các cạnh AB, AA’, A’C’. Tính diện tích thiết diện khi cắt lăng trụ ABC.A’B’C’ bởi mặt phẳng (MNE).