Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử Toán vào 10 lần 3 năm 2023 - 2024 phòng GDĐT Lạng Giang - Bắc Giang

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi thử môn Toán tuyển sinh vào lớp 10 THPT lần 3 năm học 2023 – 2024 phòng Giáo dục và Đào tạo UBND huyện Lạng Giang, tỉnh Bắc Giang; đề thi hình thức 30% trắc nghiệm + 70% tự luận, thời gian làm bài 120 phút, đề thi có đáp án và lời giải chi tiết; kỳ thi được diễn ra vào ngày 17 tháng 05 năm 2023. Trích dẫn Đề thi thử Toán vào 10 lần 3 năm 2023 – 2024 phòng GD&ĐT Lạng Giang – Bắc Giang : + Với sự phát triển của khoa học kỹ thuật hiện nay, nguời ta tạo ra nhiều mẫu xe lăn đẹp và tiện dụng cho người khuyết tật. Công ty A đã sản xuất ra những chiếc xe lăn cho nguời khuyết tật với số vốn ban đầu là triệu đồng. Chi phí để sản xuất ra một chiếc xe lăn là đồng. Giá bán ra mỗi chiếc là đồng. Viết hàm số y biểu diễn tổng số tiền (triệu đồng) đã đầu tư đến khi sản xuất ra được chiếc xe lăn (gồm vốn ban đầu và chi phí sản xuất) được là? + Giải bài toán bằng cách lập phương trình hoặc hệ phương trình. Nhân dịp ngày nghỉ lễ 30/4 và 01/5. Một cửa hàng ở Lạng Giang có chương trình khuyến mại giảm giá cho 15% cho mặt hàng thứ nhất và 20% cho mặt hàng thứ hai trở đi. Một người mua hai loại hàng và phải trả tổng cộng 2 17 triệu đồng, kể cả thuế giá trị gia tăng (VAT) với mức 10% đối với loại hàng loạt hàng thứ nhất và 8% đối với loại hàng thứ hai. Nếu thuế VAT là 9% đối với cả hai loại hàng thì người đó phải trả tổng cộng 2 18 triệu đồng. Hỏi nếu không kể thuế VAT thì người đó phải trả bao nhiêu tiền cho mỗi loại hàng? + Từ điểm M nằm ngoài đường tròn O kẻ hai tiếp tuyến MA, MB với O (A, B là hai tiếp điểm). Vẽ cát tuyến MCD với O sao cho MC MD và tia MD nằm giữa hai tia MA và MO. Gọi E là trung điểm của CD. 1. Chứng minh tứ giác MEOB nội tiếp. 2. Kẻ AB cắt MD tại I, cắt MO tại H. Chứng minh EA EB EI EM và MHC OCE. 3. Từ C kẻ đường thẳng vuông góc với OA cắt AE tại K. Chứng minh IK AC.

Nguồn: toanmath.com

Đọc Sách

Đề thi thử vào 10 môn Toán năm 2020 2021 trường THPT Lương Ngọc Quyến Thái Nguyên
Nội dung Đề thi thử vào 10 môn Toán năm 2020 2021 trường THPT Lương Ngọc Quyến Thái Nguyên Bản PDF - Nội dung bài viết Đề thi thử vào 10 môn Toán năm 2020-2021 trường THPT Lương Ngọc Quyến Thái Nguyên Đề thi thử vào 10 môn Toán năm 2020-2021 trường THPT Lương Ngọc Quyến Thái Nguyên Vào ngày ... tháng 06 năm 2020, trường THPT Lương Ngọc Quyến ở Thái Nguyên đã tổ chức kỳ thi thử tuyển sinh vào lớp 10 THPT cho năm học 2020-2021 với môn thi Toán. Đề thi thử vào lớp 10 môn Toán năm 2020-2021 của trường THPT Lương Ngọc Quyến ở Thái Nguyên bao gồm 01 trang với 10 bài toán dạng tự luận. Mỗi bài toán được tính điểm và thời gian làm bài là 120 phút. Đề thi cung cấp đáp số và lời giải chi tiết cho các bài toán. Ví dụ về một số câu hỏi trong đề thi: Cho tứ giác ABCD có AC vuông góc với BD, AC = 8cm, BD = 6cm. Gọi E, F, G, H là trung điểm của AB, BC, CD, DA. Chứng minh rằng bốn điểm E, F, G, H đều thuộc một đường tròn, và tính bán kính của đường tròn đó. Cho tam giác ABC cân tại A. Vẽ đường tròn (O;R) tiếp xúc với AB, AC tại B, C. Một điểm M bất kỳ trên cạnh BC, vẽ đường thẳng vuông góc với OM cắt tia AB, AC lần lượt tại D, E. Chứng minh tam giác ODE cân. Cho hai đường tròn (O;R) và (O’;R’) cắt nhau tại A, B. Kẻ tiếp tuyến chung DE của hai đường tròn sao cho B gần tiếp tuyến hơn so với A, gọi M là giao điểm của AB và DE. Chứng minh rằng MD^2 = ME^2 = MA.MB và đường thẳng EB cắt AD tại P, DB cắt AE tại Q. Chứng minh rằng PQ song song với DE. Đề thi thử này sẽ giúp học sinh ôn tập kiến thức và làm quen với cấu trúc đề thi tuyển sinh vào lớp 10. Hy vọng rằng các em sẽ có kết quả tốt trong kỳ thi sắp tới.
Đề thi thử vào môn Toán năm 2020 2021 phòng GD ĐT Lộc Bình Lạng Sơn
Nội dung Đề thi thử vào môn Toán năm 2020 2021 phòng GD ĐT Lộc Bình Lạng Sơn Bản PDF - Nội dung bài viết Đề thi thử vào môn Toán năm 2020-2021 phòng GD&ĐT Lộc Bình Lạng Sơn Đề thi thử vào môn Toán năm 2020-2021 phòng GD&ĐT Lộc Bình Lạng Sơn Sytu xin giới thiệu đến quý thầy cô và các em học sinh đề thi thử tuyển sinh vào lớp 10 THPT môn Toán năm học 2020-2021 của phòng GD&ĐT Lộc Bình, Lạng Sơn. Đề thi bao gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài là 120 phút. Trích dẫn đề thi thử vào lớp 10 môn Toán năm 2020-2021 phòng GD&ĐT Lộc Bình, Lạng Sơn: Cho một khu vườn hình chữ nhật có chu vi 280m. Người ta làm một lối đi xung quanh vườn (thuộc đất vườn) rộng 2m, diện tích còn lại để trồng trọt là 4256 m2. Hãy tính kích thước (các cạnh) của khu vườn đó. Cho tam giác ABC vuông tại A. Trên cạnh AC lấy điểm M. Đường tròn tâm O đường kính MC cắt BC tại điểm E. Đường thẳng BM cắt đường tròn (O) tại điểm D. a) Chứng minh tứ giác ABEM nội tiếp. b) Chứng minh rằng ME.CB = MB.CD. c) Gọi I là giao điểm của BA và CD, J là tâm đường tròn ngoại tiếp tam giác IBC. Chứng minh rằng AD vuông góc với IJ. Cho a, b, c là các số thực không âm thỏa mãn 0 ≤ a ≤ b ≤ c ≤ 1. Tìm giá trị lớn nhất của biểu thức: Q = a^2.(b - c) + b^2.(c - b) + c^2.(1 - c).
Tuyển tập 20 năm đề thi tuyển sinh vào môn Toán sở GD ĐT Bình Định
Nội dung Tuyển tập 20 năm đề thi tuyển sinh vào môn Toán sở GD ĐT Bình Định Bản PDF - Nội dung bài viết Tuyển tập 20 năm đề thi tuyển sinh vào môn Toán sở GD ĐT Bình Định Tuyển tập 20 năm đề thi tuyển sinh vào môn Toán sở GD ĐT Bình Định Tài liệu này bao gồm 32 trang, được biên soạn bởi các tác giả: Đào Xuân Luyện, Huỳnh Duy Thủy, Nguyễn Công Nhã, Nguyễn Duy Chiến, Trần Văn Chớ, Cao Hoàng Hạ, Trần Đức An. Được tổng hợp từ các đề thi tuyển sinh vào lớp 10 môn Toán của sở Giáo dục và Đào tạo tỉnh Bình Định trong vòng 20 năm qua, từ năm học 2000 – 2001 đến năm học 2019 – 2020. Danh sách các đề thi trong tài liệu gồm: Đề tuyển sinh vào lớp 10 THPT môn Toán năm học 2000 – 2001 sở GD&ĐT Bình Định. Đề tuyển sinh vào lớp 10 THPT môn Toán năm học 2001 – 2002 sở GD&ĐT Bình Định. Đề tuyển sinh vào lớp 10 THPT môn Toán năm học 2002 – 2003 sở GD&ĐT Bình Định. Đề tuyển sinh vào lớp 10 THPT môn Toán năm học 2003 – 2004 sở GD&ĐT Bình Định. Đề tuyển sinh vào lớp 10 THPT môn Toán năm học 2004 – 2005 sở GD&ĐT Bình Định. Đề tuyển sinh vào lớp 10 THPT môn Toán năm học 2005 – 2006 sở GD&ĐT Bình Định. Đề tuyển sinh vào lớp 10 THPT môn Toán năm học 2006 – 2007 sở GD&ĐT Bình Định. Đề tuyển sinh vào lớp 10 THPT môn Toán năm học 2007 – 2008 sở GD&ĐT Bình Định. Đề tuyển sinh vào lớp 10 THPT môn Toán năm học 2008 – 2009 sở GD&ĐT Bình Định. Đề tuyển sinh vào lớp 10 THPT môn Toán năm học 2009 – 2010 sở GD&ĐT Bình Định. Đề tuyển sinh vào lớp 10 THPT môn Toán năm học 2010 – 2011 sở GD&ĐT Bình Định. Đề tuyển sinh vào lớp 10 THPT môn Toán năm học 2011 – 2012 sở GD&ĐT Bình Định. Đề tuyển sinh vào lớp 10 THPT môn Toán năm học 2012 – 2013 sở GD&ĐT Bình Định. Đề tuyển sinh vào lớp 10 THPT môn Toán năm học 2013 – 2014 sở GD&ĐT Bình Định. Đề tuyển sinh vào lớp 10 THPT môn Toán năm học 2014 – 2015 sở GD&ĐT Bình Định. Đề tuyển sinh vào lớp 10 THPT môn Toán năm học 2015 – 2016 sở GD&ĐT Bình Định. Đề tuyển sinh vào lớp 10 THPT môn Toán năm học 2016 – 2017 sở GD&ĐT Bình Định. Đề tuyển sinh vào lớp 10 THPT môn Toán năm học 2017 – 2018 sở GD&ĐT Bình Định. Đề tuyển sinh vào lớp 10 THPT môn Toán năm học 2018 – 2019 sở GD&ĐT Bình Định. Đề tuyển sinh vào lớp 10 THPT môn Toán năm học 2019 – 2020 sở GD&ĐT Bình Định.
Đề thi thử vào môn Toán năm 2020 2021 trường THCS Xuân Canh Hà Nội
Nội dung Đề thi thử vào môn Toán năm 2020 2021 trường THCS Xuân Canh Hà Nội Bản PDF - Nội dung bài viết Đề thi thử vào môn Toán năm 2020-2021 trường THCS Xuân Canh Hà Nội Đề thi thử vào môn Toán năm 2020-2021 trường THCS Xuân Canh Hà Nội Trên cơ sở kế hoạch tuyển sinh vào lớp 10 THPT năm học 2020-2021, trường THCS Xuân Canh đã tổ chức kỳ thi thử môn Toán vào ngày Thứ Bảy, 04 tháng 07 năm 2020. Đề thi bao gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài là 120 phút. Trích dẫn một số bài toán trong đề thi: 1) Giải bài toán về sản xuất: Tổ sản xuất có kế hoạch làm 600 sản phẩm, sau khi làm xong 400 sản phẩm, tăng năng suất lao động. Hỏi mỗi ngày tổ sản xuất cần làm bao nhiêu sản phẩm để hoàn thành sớm hơn kế hoạch 1 ngày. 2) Tính diện tích xung quanh của hộp sữa hình trụ có thể tích 250 (cm3) khi biết đường kính đáy và độ dài trục bằng nhau. 3) Chứng minh và xác định vị trí của điểm M trên đường thẳng d để diện tích tam giác OIK (O, I, K là các điểm đã cho) đạt giá trị lớn nhất. Với những bài toán phong phú và đa dạng như vậy, đề thi thử vào lớp 10 môn Toán năm 2020-2021 của trường THCS Xuân Canh Hà Nội không chỉ giúp học sinh rèn luyện kỹ năng giải toán mà còn tạo cơ hội cho họ thử sức và chuẩn bị tốt cho kỳ thi chính thức.