Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề tuyển sinh môn Toán (chuyên) năm 2020 2021 sở GD ĐT Đồng Nai

Nội dung Đề tuyển sinh môn Toán (chuyên) năm 2020 2021 sở GD ĐT Đồng Nai Bản PDF - Nội dung bài viết Đề thi tuyển sinh môn Toán (chuyên) năm 2020 – 2021 sở GD&ĐT Đồng Nai Đề thi tuyển sinh môn Toán (chuyên) năm 2020 – 2021 sở GD&ĐT Đồng Nai Đề thi tuyển sinh lớp 10 môn Toán (chuyên) năm 2020 – 2021 của sở GD&ĐT Đồng Nai có đặc điểm nổi bật là gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài thi là 150 phút. Trích dẫn nội dung các câu hỏi trong đề tuyển sinh môn Toán (chuyên) năm 2020 – 2021: Trong mặt phẳng cho 1889 điểm thỏa mãn với 3 điểm bất kỳ tạo thành 3 đỉnh của một tam giác có diện tích nhỏ hơn 1. Chứng minh trong các điểm đã cho tồn tại 237 điểm cùng nằm bên trong hoặc trên cạnh của một tam giác có diện tích nhỏ hơn 1/2. Có bao nhiêu cách bỏ 5 cây bút khác màu gồm xanh, đen, tím, đỏ, hồng vào 5 hộp đựng bút khác màu gồm xanh, đen, tím, đỏ, hồng sao cho mỗi hộp chỉ có một bút và màu bút khác với màu hộp? Cho tam giác nhọn ABC nội tiếp đường tròn (O) có hai đường cao BE, CF cắt nhau tại trực tâm H, biết AB < AC. Chứng minh các điều kiện sau: Tứ giác ALMO nội tiếp đường tròn, và chứng minh LD là tiếp tuyến của (O). MH vuông góc với AK, suy ra KH vuông góc với AM. Ba điểm A, N, D thẳng hàng. Đề thi tuyển sinh này không chỉ đánh giá kiến thức mà còn đòi hỏi sự linh hoạt, logic và khả năng suy luận của thí sinh. Hy vọng các em sẽ tự tin và thành công trong kỳ thi sắp tới!

Nguồn: sytu.vn

Đọc Sách

Đề thi thử vào 10 môn Toán năm 2019 trường THCS Tân Mai Hà Nội
Nội dung Đề thi thử vào 10 môn Toán năm 2019 trường THCS Tân Mai Hà Nội Bản PDF - Nội dung bài viết Đề thi thử vào 10 môn Toán năm 2019 trường THCS Tân Mai Hà Nội Đề thi thử vào 10 môn Toán năm 2019 trường THCS Tân Mai Hà Nội Trong kỳ thi thử vào 10 môn Toán năm 2019 của trường THCS Tân Mai, học sinh sẽ đối diện với 5 bài toán khó khăn. Đề thi được thiết kế để đánh giá kiến thức và kỹ năng của học sinh và giúp họ chuẩn bị tốt cho kì thi chính thức vào lớp 10 THPT. Một trong những bài toán trong đề thi đòi hỏi học sinh phải biết cách lập phương trình hoặc hệ phương trình để giải quyết vấn đề thực tế. Ví dụ, bài toán về việc tính thời gian mà một chiếc xe ô tô cần phải chạy, khi phải thay đổi vận tốc do điều kiện thời tiết. Đây là một bài toán không chỉ yêu cầu kiến thức cơ bản mà còn đề cao kỹ năng làm việc đồng thời với thời gian và vận tốc. Ngoài ra, đề thi còn đề cập đến các bài toán về hình học, yêu cầu học sinh phải có khả năng phân tích và suy luận. Ví dụ, bài toán về tam giác ABC vuông tại A sẽ đòi hỏi học sinh tính toán diện tích và thể tích của hình tạo ra sau khi quay tam giác. Đề thi thử vào 10 môn Toán năm 2019 trường THCS Tân Mai Hà Nội không chỉ là bài kiểm tra kiến thức mà còn là cơ hội để học sinh thể hiện khả năng phân tích, suy luận và giải quyết vấn đề. Điều này sẽ giúp họ chuẩn bị tốt cho cuộc thi chính thức và phát triển kỹ năng toán học của mình.
Đề thi thử tuyển sinh môn Toán năm 2019 trường THPT Uông Bí Quảng Ninh
Nội dung Đề thi thử tuyển sinh môn Toán năm 2019 trường THPT Uông Bí Quảng Ninh Bản PDF - Nội dung bài viết Đề thi thử tuyển sinh môn Toán năm 2019 trường THPT Uông Bí Quảng Ninh Đề thi thử tuyển sinh môn Toán năm 2019 trường THPT Uông Bí Quảng Ninh Đề thi thử tuyển sinh lớp 10 môn Toán năm 2019 trường THPT Uông Bí – Quảng Ninh bao gồm 1 trang với 5 bài toán dạng tự luận. Học sinh sẽ có 90 phút để làm bài, kỳ thi này nhằm giúp học sinh lớp 9 nắm được dạng đề Toán và thử sức trước khi bước vào kỳ thi tuyển sinh vào lớp 10 THPT năm học 2019 – 2020. Trích dẫn một số câu hỏi trong đề thi: + Bài toán 1: Cho phương trình $x^2 - m(m - 1)x + 5 = 0$ (với m là tham số). a. Giải phương trình khi m = 3. b. Tìm m để phương trình có hai nghiệm là hai số nguyên. + Bài toán 2: Giải bài toán bằng cách lập phương trình hoặc hệ phương trình. Trên vịnh Hạ Long, vào lúc 6 giờ sáng, một chiếc tàu cá xuất phát từ đảo Ti Tốp, đi thẳng về hướng Nam với vận tốc không đổi. Nửa tiếng sau, một chiếc tàu du lịch cũng xuất phát từ đảo Ti Tốp, đi thẳng về hướng Đông với vận tốc bé hơn vận tốc tàu cá là 2 km/h. Đến 7 giờ khoảng cách giữa hai tàu là 13 km. Tính vận tốc mỗi tàu. + Bài toán 3: Cho tam giác ABC có ba góc nhọn, AB < AC. Hai đường cao BE, CF của tam giác ABC cắt nhau tại H. Hai đường thẳng EF và BC cắt nhau tại G. a. Chứng minh tứ giác AEHF nội tiếp. b. Chứng minh GB.GC = GE.GF. c. Đường tròn ngoại tiếp tam giác ABC cắt đường thẳng GA tại I khác A. Chứng minh HI vuông góc AG.
Đề thi thử vào 10 lần 2 năm 2019 2020 môn Toán phòng GD ĐT Dương Kinh Hải Phòng
Nội dung Đề thi thử vào 10 lần 2 năm 2019 2020 môn Toán phòng GD ĐT Dương Kinh Hải Phòng Bản PDF - Nội dung bài viết Đề thi thử vào 10 lần 2 năm 2019 2020 môn Toán phòng GD ĐT Dương Kinh Hải Phòng Đề thi thử vào 10 lần 2 năm 2019 2020 môn Toán phòng GD ĐT Dương Kinh Hải Phòng Đề thi thử vào 10 lần 2 năm học 2019 – 2020 môn Toán phòng GD&ĐT Dương Kinh – Hải Phòng là bài kiểm tra gồm 2 trang với 5 bài toán tự luận. Thời gian làm bài là 120 phút. Kỳ thi nhằm mục đích kiểm tra kiến thức môn Toán của học sinh lớp 9 để chuẩn bị cho kỳ thi tuyển sinh vào lớp 10 THPT năm học 2019 – 2020. Đề thi bao gồm nhiều dạng bài toán khác nhau, từ những bài đơn giản đến những bài phức tạp, giúp học sinh rèn luyện và củng cố kiến thức môn Toán một cách đồng đều. Với mỗi bài toán, học sinh sẽ phải áp dụng kiến thức đã học để giải quyết các vấn đề được đưa ra. Một trong những bài toán trong đề thi là về việc quy định diện tích khu trường theo quy định của Bộ Y tế, phản ánh rõ việc kiểm tra không chỉ kiến thức mà còn tính toán và logic của học sinh. Bài toán còn mang tính thực tế khi liên quan đến việc xác định diện tích khu trường phù hợp cho số học sinh cụ thể của một trường học. Đề thi cũng tập trung vào việc phát triển kỹ năng phân tích, suy luận và giải quyết vấn đề của học sinh thông qua các bài toán phức tạp như chứng minh tính chất của tứ giác, tính thể tích hình quay, và tính tòan học hình học. Trong tổng thể, đề thi thử vào 10 môn Toán lần 2 năm 2019 – 2020 của phòng GD&ĐT Dương Kinh – Hải Phòng không chỉ là cơ hội để học sinh ôn tập kiến thức mà còn là bài kiểm tra để đánh giá khả năng giải quyết vấn đề và logic của học sinh. Đề thi mang tính chất thiết thực và là bước chuẩn bị quan trọng cho kỳ thi tuyển sinh vào lớp 10 THPT.
Tuyển chọn 50 đề thi tuyển sinh vào chuyên môn Toán
Nội dung Tuyển chọn 50 đề thi tuyển sinh vào chuyên môn Toán Bản PDF - Nội dung bài viết Tuyển chọn 50 đề thi tuyển sinh vào chuyên môn Toán Tuyển chọn 50 đề thi tuyển sinh vào chuyên môn Toán Để giúp các em học sinh tham khảo và rèn luyện kỹ năng trong việc làm các đề thi tuyển sinh vào lớp 10 chuyên môn Toán, Sytu đã biên soạn tài liệu tuyển chọn 50 đề thi cho môn Toán. Tài liệu này bao gồm 254 trang với các đề thi được hướng dẫn theo hình thức tự luận, thời gian làm bài 120 phút và đều đi kèm với lời giải chi tiết. Trích dẫn một số đề thi trong tài liệu: Cho tam giác ABC nhọn nội tiếp đường tròn (O) có góc BAC = 45 độ, BC = a. Gọi E, F lần lượt là chân đường vuông góc hạ từ B xuống AC và từ C xuống AB. Gọi I là điểm đối xứng của O qua EF. a) Chứng minh rằng các tứ giác BFOC và AEIF nội tiếp được đường tròn. b) Tính EF theo a. Cho phương trình (x – 2)(x^2 – x) + (4m + 1)x – 8m – 2 = 0 (x là ẩn số). Tìm m để phương trình có ba nghiệm phân biệt x1; x2; x3 thỏa mãn điều kiện x1^2 + x2^2 + x3^2 = 11. Cho phương trình x^2 – 2(m + 1)x + m^2 = 0 (1). Tìm m để phương trình có 2 nghiệm x1; x2 thỏa mãn (x1 – m)^2 + x2 = m + 2. Tài liệu này sẽ giúp các em học sinh ôn tập và kiểm tra kiến thức một cách kỹ lưỡng, chuẩn bị tốt nhất cho kỳ thi sắp tới.