Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi HSG Toán 9 năm 2023 - 2024 phòng GDĐT thành phố Vinh - Nghệ An

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi môn Toán 9 năm học 2023 – 2024 phòng Giáo dục và Đào tạo thành phố Vinh, tỉnh Nghệ An. Trích dẫn Đề thi HSG Toán 9 năm 2023 – 2024 phòng GD&ĐT thành phố Vinh – Nghệ An : + Chứng minh rằng với mọi số nguyên n thì: n3 + 3n2 + 2024n chia hết cho 6. b. Tìm số tự nhiên n sao cho: 3n + 19 là số chính phương. c. Cho a, b là các số thực dương. Tìm giá trị nhỏ nhất của biểu thức: Q. + Cho nửa đường tròn tâm O, đường kính AB = 2a. Lấy điểm M bất kì trên đoạn thẳng AB (không trùng với A và B). Trên nửa mặt phẳng bờ AB chứa nửa đường tròn kẻ hai tia Mx, My sao cho AMx = BMy = 30°. Tia Mx và tia My cắt nửa đường tròn tâm O lần lượt tại E và F. Gọi P, Q theo thứ tự là hình chiếu của điểm E, F trên AB. a. Giả sử EF = a3. Tính số đo góc EOF. b. Cho AM = a/2. Tính diện tích hình thang EPQF theo a. c. Chứng minh rằng khi M di động trên đoạn thẳng AB, điểm O luôn cách đường thẳng EF một khoảng không đổi. + Cho tam giác ABC, O là giao điểm của ba đường phân giác. Qua O kẻ đường thẳng bất kỳ cắt hai cạnh AB, AC tại M, N. Giả sử điểm O cố định và khoảng cách từ O đến cạnh AB của tam giác ABC bằng 1cm. Xác định dạng của tam giác ABC và vị trí của đường thẳng MN để diện tích tam giác AMN đạt giá trị nhỏ nhất.

Nguồn: toanmath.com

Đọc Sách

Đề thi học sinh giỏi Toán 9 năm 2021 - 2022 phòng GDĐT quận Hoàn Kiếm - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi khảo sát học sinh giỏi môn Toán lớp 9 cấp quận năm học 2021 – 2022 phòng Giáo dục và Đào tạo quận Hoàn Kiếm, thành phố Hà Nội; kỳ thi được diễn ra vào thứ Năm ngày 17 tháng 02 năm 2022.
Đề thi học sinh giỏi Toán 9 năm 2021 - 2022 phòng GDĐT quận Hai Bà Trưng - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi chọn học sinh giỏi môn Toán lớp 9 cấp quận năm học 2021 – 2022 phòng Giáo dục và Đào tạo quận Hai Bà Trưng, thành phố Hà Nội; kỳ thi được diễn ra vào thứ Năm ngày 17 tháng 02 năm 2022.
Đề thi học sinh giỏi Toán 9 cấp tỉnh năm 2021 - 2022 sở GDĐT Bắc Ninh
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi môn Toán 9 cấp tỉnh năm học 2021 – 2022 sở Giáo dục và Đào tạo UBND tỉnh Bắc Ninh; kỳ thi được diễn ra vào thứ Tư ngày 16 tháng 02 năm 2022.
Đề thi học sinh giỏi Toán 9 năm 2021 - 2022 trường THCS Cầu Giấy - Hà Nội
Đề thi học sinh giỏi Toán 9 năm 2021 – 2022 trường THCS Cầu Giấy – Hà Nội gồm 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 90 phút; kỳ thi được diễn ra vào ngày … tháng 02 năm 2022. Trích dẫn đề thi học sinh giỏi Toán 9 năm 2021 – 2022 trường THCS Cầu Giấy – Hà Nội : + Cho a b c là các số thực thỏa mãn 0 a b c 1. Tìm giá trị lớn nhất của biểu thức T. + Cho tam giác nhọn ABC với AB là cạnh nhỏ nhất, gọi D là trung điểm cạnh AB và P là điểm trong tam giác sao cho CAP = CBP = ACB. Gọi M, N lần lượt là chân đường vuông góc hạ từ P xuống BC và AC. Đường thẳng đi qua M và song song với AC cắt đường thẳng đi qua N và song song với BC tại K. Gọi E là giao điểm của KN và AP; F là giao điểm của KM và BP. a. Chứng minh rằng E và F lần lượt là trung điểm của AP và BP. b. Chứng minh rằng D nằm trên trung trực của MN. c. Chứng minh rằng MDN = 2MKN. + Có 27 con Robot tham gia một cuộc đua. Trong mỗi vòng sẽ có 3 con tham gia, mỗi con Robot chạy với tốc độ cố định, không đổi giữa các vòng đua và tốc độ của mỗi con Robot là đôi một khác nhau. Sau mỗi vòng, người ta ghi lại thứ tự về thành tích của các Robot tham gia vòng đua đó. Hỏi 14 vòng đua có đủ để xác định thứ tự của hai con Robot chạy nhanh nhất hay không?