Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử Toán tuyển sinh lớp 10 năm 2018 - 2019 trường Lương Thế Vinh - Hà Nội

THCS. giới thiệu đến các em học sinh lớp 9 đề thi thử Toán tuyển sinh lớp 10 năm 2018 – 2019 trường Lương Thế Vinh – Hà Nội, đề thi được biên soạn theo hình thức và cấu trúc tương tự với đề Toán tuyển sinh vào lớp 10 của sở Giáo dục và Đào tạo Hà Nội những năm gần đây. Trích dẫn đề thi thử Toán tuyển sinh lớp 10 năm 2018 – 2019 trường Lương Thế Vinh – Hà Nội : + Một ca nô đi xuôi dòng từ A đến B cách nhau 54 km, cùng lúc đó một khúc gỗ trôi tự do theo dòng nước từ A. Khi ca nô đến B, nó dừng lại ở đó 2 giờ và quay trở lại về A. Trên đường về, ca nô gặp khúc gỗ tại vị trí cách A 19 km. Tính vận tốc thực của ca nô biết vận tốc của dòng nước là 4km/h. [ads] + Cho parabol (P): y = x^2 và đường thẳng (d): y = 2mx + 2m + 3. a) Tìm m để (d) và (P) cắt nhau tại điểm phân biệt A và B nằm khắc phía của Oy. b) Với các giá trị của m ở câu a, lần lượt kẻ AH, BK vuông góc với Ox tại H và K. Gọi P là giao điểm của (d) và Oy. Tìm m để tam giác PHK vuông tại P. + Cho đường tròn (O;R) đường kính AB. Dây CD vuông góc với AB tại I cố định nằm giữa A và O. Lấy M bất kì trên cung nhỏ BC (M không trùng với B, C). AM cắt CI tại điểm K. a) Chứng minh tứ giác BMKI nội tiếp. b) Chứng minh AK.AM = AI.AB = AC^2. c) Nếu tam giác BIC quay quanh quạnh BI một vòng ta sẽ được một hình nón đỉnh B. Hãy tính thể tích hình nón này khi ABC = 30°. d) Tìm vị trí của M trên cung nhỏ BC để chu vi tứ giác ABMC lớn nhất.

Nguồn: toanmath.com

Đọc Sách

Đề thi vào 10 chuyên môn Toán (chung - XH) năm 2023 - 2024 sở GDĐT Nam Định
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi chính thức tuyển sinh vào lớp 10 trường THPT chuyên môn Toán (đề chung – dành cho học sinh thi vào các lớp chuyên xã hội) năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Nam Định.
Đề thi vào 10 chuyên môn Toán (chung - TN) năm 2023 - 2024 sở GDĐT Nam Định
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi chính thức tuyển sinh vào lớp 10 trường THPT chuyên môn Toán (đề chung – dành cho học sinh thi vào các lớp chuyên tự nhiên) năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Nam Định.
Đề thi vào lớp 10 môn Toán (chung) năm 2023 - 2024 sở GDĐT Lai Châu
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi chính thức kỳ thi tuyển sinh vào lớp 10 môn Toán (môn chung) năm học 2023 – 2024 sở Giáo dục và Đào tạo UBND tỉnh Lai Châu; kỳ thi được diễn ra vào ngày 27 tháng 05 năm 2023. Trích dẫn Đề thi vào lớp 10 môn Toán (chung) năm 2023 – 2024 sở GD&ĐT Lai Châu : + Chủ Nhật hàng tuần, Nam thường tập thể dục bằng cách đạp xe đạp trên một quãng đường từ nhà lên Thành phố và ngược lại. Vận tốc đạp xe đạp của Nam lúc đi nhanh hơn lúc về 3km/h. Biết quãng đường từ nhà Nam đến Thành phố là 30km và tổng thời gian cả đi lẫn về là 4 giờ 30 phút. Tính vận tốc đạp xe đạp lúc đi của Nam. + Cho tam giác ABC vuông tại A, biết cạnh BC = 10cm, góc B = 60 độ (hình vẽ bên). Tính cạnh AC, với sin 60°. + Từ điểm M nằm ngoài (O) kẻ hai tiếp tuyến MA, MB (A, B là các tiếp điểm) và cát tuyến MCD với đường tròn (C nằm giữa M và D, O và A nằm về hai phía đối với CD). Gọi H là giao điểm của MO và AB. a) Chứng minh tứ giác MAOB nội tiếp. b) Chứng minh MC.MD = MH.MO. c)Kẻ đường kính AI của (O), các dây IC, ID cắt MO tại P và Q. Chứng minh OP = OQ.
Đề thi vào 10 môn Toán (chung) năm 2023 - 2024 trường chuyên Lam Sơn - Thanh Hóa
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán (dùng chung cho tất cả các thí sinh) năm học 2023 – 2024 trường THPT chuyên Lam Sơn, tỉnh Thanh Hóa; kỳ thi được diễn ra vào ngày 26 tháng 05 năm 2023. Trích dẫn Đề thi vào 10 môn Toán (chung) năm 2023 – 2024 trường chuyên Lam Sơn – Thanh Hóa : + Tìm m, n để đường thẳng (d): y = mx + n đi qua điểm A(2;3) và cắt đường thẳng y = x – 2 tại điểm có hoành độ bằng −1. + Cho phương trình x2 − 2(m + 1)x + m2 + 4 = 0 (m là tham số). 1. Giải phương trình khi m = 6. 2. Tìm m để phương trình có hai nghiệm x1, x2 thỏa mãn 6×12 + 6x1x2 = (m + 1)(x13 + x23 – 12×2). + Cho đường tròn (O) đường kính AB. Trên đường tròn (O) lấy điểm C không trùng với B sao cho CA > CB. Các tiếp tuyến của đường tròn (O) tại A và C cắt nhau tại D. Gọi H là hình chiếu vuông góc của C trên AB, E là giao điểm của hai đường thẳng OD và AC. 1. Chứng minh tứ giác OADC nội tiếp đường tròn. 2. Gọi F là giao điểm của hai đường thẳng CD và AB. Chứng minh 2BCF + CFB = 90. 3. Gọi M là giao điểm của hai đường thẳng BD và CH. Chứng minh OC/EM – EO/ED = 1.