Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi cấp tỉnh Toán 11 năm 2023 - 2024 sở GDĐT Thái Nguyên

giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề thi chọn học sinh giỏi cấp tỉnh môn Toán 11 năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Thái Nguyên; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề học sinh giỏi cấp tỉnh Toán 11 năm 2023 – 2024 sở GD&ĐT Thái Nguyên : + Cho tập hợp A = {1; 2; 3; 4; 5}. Gọi B là tập hợp gồm tất cả các số tự nhiên có ít nhất ba chữ số, các chữ số đôi một khác nhau thuộc tập hợp A. Chọn ngẫu nhiên một số thuộc tập hợp B. Tính xác suất để số được chọn có tổng các chữ số bằng 10. + Cho tam giác ABC có đỉnh A(1;2), đường trung tuyến BM có phương trình 2 1 0 x y và đường phân giác trong CD có phương trình x y 1 0. Viết phương trình đường thẳng BC. + Một câu lạc bộ có 41 thành viên, mỗi người quen với ít nhất 21 người khác (trong đó quan hệ quen biết là hai chiều). a. Chứng minh rằng tồn tại 3 thành viên đôi một quen nhau. b. Chứng minh rằng tồn tại ít nhất một thành viên có số người quen là số chẵn. c. Hỏi có thể xảy ra trường hợp 3 thành viên bất kỳ trong câu lạc bộ đều có không quá 5 người quen chung hay không?

Nguồn: toanmath.com

Đọc Sách

Đề học sinh giỏi Toán 11 năm 2020 - 2021 trường THPT Minh Châu - Hưng Yên
Đề học sinh giỏi Toán 11 năm học 2020 – 2021 trường THPT Minh Châu – Hưng Yên gồm 01 trang với 06 bài toán dạng tự luận, thời gian làm bài 120 phút, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề học sinh giỏi Toán 11 năm 2020 – 2021 trường THPT Minh Châu – Hưng Yên : + Đề thi THPT môn Toán gồm 50 câu trắc nghiệm khách quan, mỗi câu có 4 phương án trả lời và chỉ có 1 phương án đúng, mỗi câu trả lời đúng được cộng 0,2 điểm, điểm tối đa là 10 điểm. Một học sinh có năng lực trung bình đã làm đúng được 25 câu (từ câu 1 đến câu 25), các câu còn lại học sinh đó không biết cách giải nên chọn phương án ngẫu nhiên cả 25 câu còn lại. Tính xác suất để điểm thi môn Toán của học sinh đó lớn hơn 6 điểm nhưng không vượt quá 8 điểm (làm tròn đến hàng phần nghìn). + Cho hình chóp S ABCD có đáy ABCD là hình bình hành, mặt bên SAB là tam giác vuông tại A, SA a 3, SB a 2. Điểm M nằm trên đoạn AD sao cho AM MD 2. Gọi P là mặt phẳng qua M và song song với SAB. a) Tính góc giữa hai đường thẳng SB và CD. b) Tính diện tích thiết diện của hình chóp cắt bởi mặt phẳng P. + Cho dãy số un được xác định như sau. Tìm công thức số hạng tổng quát của dãy số un và tính lim n.
Đề Olympic 30 tháng 4 Toán 11 năm 2021 trường chuyên Lê Hồng Phong - TP HCM
Thứ Bảy ngày 03 tháng 04 năm 2021, trường THPT chuyên Lê Hồng Phong, quận 5, thành phố Hồ Chí Minh tổ chức kỳ thi Olympic truyền thống 30 tháng 4 môn Toán lớp 11 lần thứ XXVI (26) năm 2021. Đề Olympic 30 tháng 4 Toán 11 năm 2021 trường chuyên Lê Hồng Phong – TP HCM được biên soạn theo hình thức tự luận, đề gồm 01 trang với 05 bài toán, thời gian làm bài 180 phút, đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề Olympic 30 tháng 4 Toán 11 năm 2021 trường chuyên Lê Hồng Phong – TP HCM : + Với mỗi “bộ số đẹp” x, y ta có thể tạo ra 1 “bộ số đẹp” mới bởi 1 trong 2 phép biến đổi: hoặc đổi dấu của 1 trong 2 số hoặc cộng 1 số nguyên k nào đó vào cả 2 số sao cho x k y k là “bộ số đẹp”. Chứng minh rằng với bất kỳ 2 bộ số đẹp x, y và z, t cho trước ta luôn có thể biến đổi từ x, y thành z, t sau hữu hạn các bước biến đổi như trên. + Cho tam giác nhọn không cân ABC nội tiếp đường tròn O. Gọi A B C là chân đường cao hạ từ các đỉnh A B C. Một đường tròn qua B C tiếp xúc với cung nhỏ BC của O tại 1 A. Các điểm 1 1 B C xác định tương tự. a. Chứng minh rằng 1 1 cot cot A B B A C C. b. Vẽ các hình bình hành 1 1 B ABX C ACY. Chứng minh rằng các điểm 1 X Y A và A0 thuộc một đường tròn với AA0 là đường kính của O. c. Vẽ các hình bình hành 1 2 1 2 1 2 BACA CB AB AC BC. Chứng minh rằng đường tròn ngoại tiếp tam giác A B C 2 2 2 đi qua trực tâm của tam giác ABC. + Bộ hai số nguyên khác không x, y được gọi là “bộ số đẹp” nếu x là số lẻ, y là số chẵn x, y nguyên tố cùng nhau và 2 2 x y là số chính phương.
Đề Olympic tháng 4 Toán 11 năm 2020 - 2021 sở GDĐT TP Hồ Chí Minh
Sáng thứ Bảy ngày 17 tháng 04 năm 2021, sở Giáo dục và Đào tạo thành phố Hồ Chí Minh tổ chức kỳ thi Olympic tháng 4 cấp THPT mở rộng môn Toán lớp 11 năm học 2020 – 2021. Đề Olympic tháng 4 Toán 11 năm 2020 – 2021 sở GD&ĐT TP Hồ Chí Minh gồm 01 trang với 05 bài toán tự luận, thời gian làm bài 120 phút.
Đề học sinh giỏi cấp tỉnh Toán 11 chuyên năm 2020 - 2021 sở GDĐT Lạng Sơn
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề thi chọn học sinh giỏi cấp tỉnh môn Toán 11 chuyên năm học 2020 – 2021 sở Giáo dục và Đào tạo tỉnh Lạng Sơn; đề thi gồm 01 trang với 05 bài toán dạng tự luận, thang điểm 20, thời gian học sinh làm bài thi là 180 phút (không kể thời gian giáo viên coi thi phát đề), đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm.