Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi học kì 1 (HK1) lớp 11 môn Toán năm 2019 2020 trường THPT Phú Quốc Kiên Giang

Nội dung Đề thi học kì 1 (HK1) lớp 11 môn Toán năm 2019 2020 trường THPT Phú Quốc Kiên Giang Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề thi học kì 1 Toán lớp 11 năm 2019 – 2020 trường THPT Phú Quốc – Kiên Giang, kì thi nhằm giúp nhà trường đánh giá chất lượng dạy và học môn Toán lớp 11 của giáo viên và học sinh trong học kì vừa qua. Đề thi học kì 1 Toán lớp 11 năm 2019 – 2020 trường THPT Phú Quốc – Kiên Giang mã đề 123 gồm có 04 trang, đề được biên soạn theo hình thức trắc nghiệm khách quan kết hợp với tự luận, phần trắc nghiệm gồm có 30 câu, chiếm 6,0 điểm, phần tự luận gồm 03 câu, chiếm 4,0 điểm, thời gian làm bài 90 phút, đề thi có đáp án. Trích dẫn đề thi học kì 1 Toán lớp 11 năm 2019 – 2020 trường THPT Phú Quốc – Kiên Giang : + Hình vẽ bên là hai bánh răng của một động cơ, chúng có cùng kích thước. Khi động cơ hoạt động, hai bánh răng quay đều, cùng chiều. Biết tốc độ quay của bánh răng ở hình 2 gấp đôi tốc độ quay của bánh răng ở hình 1 và phương trình biểu thị độ cao của điểm A ở bánh răng thứ nhất là h = 2R + Rsin(pi/5.t) (trong đó R là bán kính bánh răng, t là thời gian quay tính bằng giây, h là độ cao của điểm A). Giả sử tại thời điểm bắt đầu khởi động, hai điểm  A, B có độ cao bằng nhau. Tìm thời điểm đầu tiên sau khi động cơ hoạt động, hai điểm A, B có độ cao bằng nhau. + Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Các điểm M, N, P lần lượt là các trung điểm của các đoạn SA, AB, CD như hình vẽ. Đường thẳng nào không song song với mặt phẳng (MNP)? A. Đường thẳng SB. B. Đường thẳng SD. C. Đường thẳng AD. D. Đường thẳng BC. [ads] + Một vệ tinh nhân tạo bay quanh Trái Đất theo quỹ đạo hình elip. Độ cao h (tính bằng km) của vệ tinh so với bề mặt của Trái đất được xác định bởi công thức h = 550 + 450cospi/50t, trong đó t tính bằng phút kể từ lúc vệ tinh bay vào quỹ đạo (Theo SGK ĐS> 11 – Chương trình nâng cao). Gọi t0 là thời điểm đầu tiên mà vệ tinh cách mặt đất 250km. Khẳng định nào đúng? + Hệ thống bảng viết trong các phòng học của trường THPT Phú Quốc, tỉnh Kiên Giang được thiết kế dạng trượt sang hai bên như hình vẽ. Khi cần sử dụng khoảng không ở giữa, ta sẽ kéo bảng về phía hai bên. Khi kéo tấm bảng sang phía bên trái hoặc bên phải, ta đã thực hiện phép biến hình nào đối với tấm bảng? A. Phép quay. B. Phép tịnh tiến. C. Phép đối xứng tâm. D. Phép vị tự. + Cho hình chóp S.ABC và các điểm M, N, P thuộc các cạnh SA, SB, BC như hình vẽ. Tìm giao điểm I của đường thẳng MN và mặt phẳng (ABC). A. I là giao điểm của đường thẳng MN và đường thẳng AB. B. I là giao điểm của đường thẳng MN và đường thẳng AP. C. I là giao điểm của đường thẳng MN và đường thẳng BC. D. I là giao điểm của đường thẳng MN và đường thẳng AC.

Nguồn: sytu.vn

Đọc Sách

Đề thi HK1 Toán 11 năm 2019 - 2020 trường THPT Nguyễn Thị Minh Khai - TP HCM
Nhằm giúp các em học sinh lớp 11 có tư liệu ôn tập để chuẩn bị cho kỳ thi học kì 1 môn Toán 11, sưu tầm và chia sẻ đến các em nội dung đề thi + đáp án + lời giải chi tiết đề thi HK1 Toán 11 năm học 2019 – 2020 trường THPT Nguyễn Thị Minh Khai, thành phố Hồ Chí Minh. Trích dẫn đề thi HK1 Toán 11 năm 2019 – 2020 trường THPT Nguyễn Thị Minh Khai – TP HCM : + Lớp 11A14 có 30 học sinh được chia làm 4 tổ: tổ 1 có 6 học sinh, tổ 2 có 7 học sinh, tổ 3 có 8 học sinh, tổ 4 có 9 học sinh. Giáo viên dạy môn Toán của lớp cần chọn ra 10 học sinh để tham dự ngoại khóa.Hỏi có bao nhiêu cách chọn để mỗi tổ có ít nhất 1 học sinh tham dự. + Từ các chữ số của tập hợp M = {1, 2, 3, 4, 5, 6, 7}, người ta tạo ra các số nguyên dương gồm 2 chữ số phân biệt. Tính xác suất để số tạo thành là số lẻ. + Dùng phương pháp qui nạp toán học, chứng minh rằng với mọi số nguyên dương n, ta có: 1.4 + 2.7 + … + n(3n + 1) = n(n + 1)^2.
Đề thi HK1 Toán 11 năm 2019 - 2020 trường THPT Tân Phong - TP HCM
Nhằm giúp các em học sinh lớp 11 có tư liệu ôn tập để chuẩn bị cho kỳ thi học kì 1 môn Toán 11, sưu tầm và chia sẻ đến các em nội dung đề thi + đáp án + lời giải chi tiết đề thi HK1 Toán 11 năm học 2019 – 2020 trường THPT Tân Phong, thành phố Hồ Chí Minh. Trích dẫn đề thi HK1 Toán 11 năm 2019 – 2020 trường THPT Tân Phong – TP HCM : + Từ 9 học sinh gồm 5 nam và 4 nữ. Chọn ngẫu nhiên 6 học sinh xếp thành hàng ngang. Tính xác suất để không có 2 nam sinh đứng cạnh nhau. + Có 7 phiếu bốc thăm, trong đó có 3 phiếu trúng quà. Ông An được phép bốc 3 phiếu. Tính xác suất để ông An được 2 phiếu trúng quà. + Một lớp học có 20 học sinh nam và 19 học sinh nữ. Hỏi có bao nhiêu cách để chọn ra 1 cặp song ca gồm 1 học sinh nam và 1 học sinh nữ?
Đề thi HK1 Toán 11 năm 2019 - 2020 trường THPT Lương Thế Vinh - TP HCM
Nhằm giúp các em học sinh lớp 11 có tư liệu ôn tập để chuẩn bị cho kỳ thi học kì 1 môn Toán 11, sưu tầm và chia sẻ đến các em nội dung đề thi + đáp án + lời giải chi tiết đề thi HK1 Toán 11 năm học 2019 – 2020 trường THPT Lương Thế Vinh, thành phố Hồ Chí Minh. Trích dẫn đề thi HK1 Toán 11 năm 2019 – 2020 trường THPT Lương Thế Vinh – TP HCM : + Từ tập hợp X = {0; 1; 2; 3; 4; 5} có thể lập được bao nhiêu số tự nhiên lẻ có 4 chữ số khác nhau? + Một hộp chứa 3 viên bi xanh, 5 viên bi đỏ, 7 viên bi vàng. Lấy ngẫu nhiên 8 viên bi. Tính xác suất của biến cố A: “Các bi được chọn có đúng có 2 màu”. + Lớp 11A có 21 học sinh giỏi Toán, 16 học sinh giỏi Lý, 11 em không giỏi Toán và cũng không giỏi Lý. Chọn 2 em học sinh để tham gia dự án, tính xác suất của biến cố B: “Chọn được 2 em giỏi cả hai môn Toán và Lý”, biết lớp có 40 học sinh.
Đề thi HK1 Toán 11 năm 2019 - 2020 trường THPT Mạc Đĩnh Chi - TP HCM
Nhằm giúp các em học sinh lớp 11 có tư liệu ôn tập để chuẩn bị cho kỳ thi học kì 1 môn Toán 11, sưu tầm và chia sẻ đến các em nội dung đề thi + đáp án + lời giải chi tiết đề thi HK1 Toán 11 năm học 2019 – 2020 trường THPT Mạc Đĩnh Chi, thành phố Hồ Chí Minh. Trích dẫn đề thi HK1 Toán 11 năm 2019 – 2020 trường THPT Mạc Đĩnh Chi – TP HCM : + Trong kỳ thi học kỳ 1, phòng thi số 1 có 24 học sinh trong đó có 4 học sinh tên An, Bảo, Cường, Danh. Trong phòng thi có 24 bàn xếp thành 4 dãy theo hàng dọc, mỗi dãy có 6 bàn. Giám thị phòng thi bố trí cho các học sinh ngồi ngẫu nhiên vào 24 bàn, mỗi bàn 1 học sinh. Tính xác suất 4 bạn có tên trên ngồi cạnh nhau theo cùng một hàng dọc. + Xác suất ném bóng vào rổ thành công trong mỗi lần ném của bốn học sinh An, Bảo, Cường, Danh lần lượt là 0.5, 0.6, 0.7, 0.8. Cho mỗi học sinh trên ném bóng vào rổ 1 lần. Tính xác suất có ít nhất một người ném thành công. + Trên một đường tròn cho n điểm phân biệt. Biết số tam giác có 3 đỉnh lấy từ n điểm này nhiều hơn số đoạn thẳng có 2 đầu mút cũng được lấy từ n điểm này là 75. Tìm n.