Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Kiểm tra định kỳ lớp 11 môn Toán năm 2018 2019 trường Nam Tiền Hải Thái Bình

Nội dung Kiểm tra định kỳ lớp 11 môn Toán năm 2018 2019 trường Nam Tiền Hải Thái Bình Bản PDF Kỳ thi kiểm tra định kỳ Toán lớp 11 năm học 2018 – 2019 trường THPT Nam Tiền Hải – Thái Bình được diễn ra trong giai đoạn giữa học kỳ 2 năm học 2018 – 2019, nhằm giúp giáo viên đánh giá tổng quát lại các kiến thức Toán lớp 11 học sinh đã học trong giai đoạn đầu của học kỳ 2 năm học 2018 – 2019 vừa qua, các nội dung kiểm tra gồm có: giới hạn và liên tục, bài toán quan hệ vuông góc. Đề kiểm tra định kỳ Toán lớp 11 năm 2018 – 2019 trường Nam Tiền Hải – Thái Bình có mã đề 177 gồm 06 trang với 50 câu hỏi và bài toán dạng trắc nghiệm, học sinh có 90 phút để hoàn thành bài thi, đề thi có đáp án mã đề 177, 276, 375, 478. Trích dẫn nội dung đề kiểm tra định kỳ Toán lớp 11 năm 2018 – 2019 trường Nam Tiền Hải – Thái Bình : + Mệnh đề nào sau đây đúng? A. Góc giữa hai đường thẳng bất kỳ luôn là góc nhọn. B. Góc giữa hai đường thẳng a và b bằng với góc giữa hai đường thẳng a và c khi b vuông góc với c. C. Góc giữa hai đường thẳng a và b bằng với góc giữa hai đường thẳng a và c khi b song song hoặc trùng với c. D. Góc giữa hai đường thẳng luôn luôn bằng với góc giữa hai véctơ có giá là hai đường thẳng đó. [ads] + Trong không gian, tìm mệnh đề đúng? A. ba vectơ đồng phẳng khi và chỉ khi giá của ba vectơ đó song song với nhau. B. ba vectơ đồng phẳng khi và chỉ khi ba vectơ phải nằm trong cùng một mặt phẳng. C. ba vectơ đồng phẳng khi và chỉ khi ba vectơ cùng hướng. D. ba vectơ đồng phẳng khi và chỉ khi giá của ba vectơ đó cùng song song với một mặt phẳng. + Cho phương trình x^3 + ax^2 + bx + c = 0 (1) trong đó a, b, c là các tham số thực. Chọn khẳng định đúng trong các khẳng định sau: A. Phương trình (1) có ít nhất hai nghiệm với mọi a, b, c. B. Phương trình (1) vô nghiệm với mọi a, b, c. C. Phương trình (1) có ít nhất ba nghiệm với mọi a, b, c. D. Phương trình (1) có ít nhất một nghiệm với mọi a, b, c. File WORD (dành cho quý thầy, cô):

Nguồn: sytu.vn

Đọc Sách

Đề thi KSCL lần 1 Toán 11 năm 2019 - 2020 trường Thanh Miện - Hải Dương
Chủ Nhật ngày 10 tháng 11 năm 2019, trường THPT Thanh Miện, tỉnh Hải Dương tổ chức kỳ thi khảo sát chất lượng lần 1 môn Toán 11 năm học 2019 – 2020, nhằm kiểm tra kiến thức Toán 11 định kỳ. Đề thi KSCL lần 1 Toán 11 năm học 2019 – 2020 trường THPT Thanh Miện – Hải Dương có mã đề 131, đề gồm 05 trang với 50 câu hỏi và bài toán hình thức trắc nghiệm khách quan, thời gian làm bài 90 phút (không kể thời gian giao đề), đề thi có đáp án. Trích dẫn đề thi KSCL lần 1 Toán 11 năm 2019 – 2020 trường Thanh Miện – Hải Dương : + Một trường đại học tổ chức thi vấn đáp tiếng anh cho sinh viên của trường. Có 15 đề thi vấn đáp, trong đó 6 đề có nội dung về giáo dục, 4 đề có nội dung về kinh tế và 5 đề có nội dung về thể thao. Một sinh viên rút thăm bất kỳ một đề để trả lời. Tìm xác suất để sinh viên đó rút được đề có nội dung về giáo dục? + Cho hai đường thẳng song song a và b. Trên đường thẳng a lấy 6 điểm phân biệt. Trên đường thẳng b lấy 5 điểm phân biệt. Chọn ngẫu nhiên 3 điểm. Xác xuất để ba điểm được chọn tạo thành một tam giác là? [ads] + Cho tập A có n phần tử (n ∈ N*), điều nào sau đây là sai? A. Số các chỉnh hợp chập k của n phần tử là nAk = n!/(n – k)! với k ≤ n, k thuộc N*. B. Số các tổ hợp chập k của n phần tử là nCk = n!/k!(n – k)! với k ≤ n, k thuộc N. C. Số các hoán vị của (n + 1) phần tử là 1.2.3…(n – 2)(n – 1)n. D. Mỗi hoán vị của n phần tử cũng chính là một chỉnh hợp chập n của n phần tử. Vì vậy Pn = nAn. + Trường THPT Thanh Miện, tỉnh Hải Dương có 15 học sinh giỏi gồm 6 học sinh khối 12, 4 học sinh khối 11 và 5 học sinh khối 10. Hỏi có bao nhiêu cách chọn ra 6 học sinh sao cho mỗi khối có ít nhất 1 học sinh? + Trong mặt phẳng tọa độ Oxy, cho hai điểm A(1;6), B(-1;-4). Gọi C, D lần lượt là ảnh của A và B qua phép tịnh tiến theo vectơ v = (1;5). Tìm khẳng định đúng: A. ABCD là hình thoi. B. ABCD là hình bình hành. C. Bốn điểm A, B, C, D thẳng hàng. D. ABCD là hình thang.
Đề khảo sát chất lượng Toán 11 lần 1 năm 2019 - 2020 trường Yên Lạc - Vĩnh Phúc
giới thiệu đến quý thầy, cô giáo cùng các em học sinh khối 11 đề khảo sát chất lượng Toán 11 lần 1 năm học 2019 – 2020 trường THPT Yên Lạc – Vĩnh Phúc, đề thi có mã đề 507 gồm 04 trang với 50 câu hỏi và bài toán dạng trắc nghiệm khách quan, thời gian làm bài 90 phút, đề thi có đáp án. Trích dẫn đề khảo sát chất lượng Toán 11 lần 1 năm 2019 – 2020 trường Yên Lạc – Vĩnh Phúc : + Biết rằng N là ảnh của M qua phép đối xứng tâm O. Phát biểu nào sau đây là đúng? A. Hoành độ của M và N đối nhau, tung độ của M và N đối nhau. B. Hoành độ của M và N đối nhau, tung độ của M và N bằng nhau. C. Hoành độ của M và N bằng nhau, tung độ của M và N đối nhau. D. Hoành độ của M và N bằng nhau, tung độ của M và N bằng nhau. [ads] + Ba bạn A, B, C mỗi bạn viết ngẫu nhiên một số tự nhiên thuộc đoạn [1;16] được kí hiệu theo thứ tự là a, b, c rồi lập phương trình bậc hai ax^2 + bx + c = 0. Số phương trình bậc hai lập được có nghiệm kép là? + Trong mặt phẳng Oxy, cho đường tròn (C): x^2 + y^2 – 2x – 6y + 6 = 0. Đường thẳng (d) đi qua M(2;3) cắt (C) tại hai điểm A, B. Tiếp tuyến của đường tròn tại A và B cắt nhau tại E. Biết S_AEB = 32/5 và phương trình đường thẳng (d) có dạng ax – y + c = 0 với a, c ∈ Z và a > 0. Khi đó a + 2c bằng?
Đề khảo sát THPTQG lần 1 Toán 11 năm 2019 - 2020 trường chuyên Vĩnh Phúc
Ngày … tháng 11 năm 2019, trường THPT chuyên Vĩnh Phúc tổ chức kỳ thi khảo sát chất lượng các môn thi Trung học Phổ thông Quốc gia lần 1 môn Toán lớp 11 năm học 2019 – 2020. Đề khảo sát THPTQG lần 1 Toán 11 năm 2019 – 2020 trường chuyên Vĩnh Phúc có mã đề 890, đề được biên soạn theo dạng đề trắc nghiệm với 50 câu hỏi và bài toán, thời gian làm bài 90 phút, đề thi gồm có 05 trang, đây là kỳ thi được tổ chức thường xuyên qua các năm lớp 11 – lớp 11 – lớp 12, nhằm có sự chuẩn bị lâu dài cho kỳ thi THPT Quốc gia môn Toán, đề thi có đáp án. Trích dẫn đề khảo sát THPTQG lần 1 Toán 11 năm 2019 – 2020 trường chuyên Vĩnh Phúc : + Cho các mệnh đề: “Phép biến hình là phép dời hình” (I). “Phép dời hình là phép biến hình” (II). “Phép dời hình là phép đồng dạng” (III). “Phép đồng dạng là phép biến hình” (IV). Các mệnh đề đúng là? + Đồ thị của hàm số y = x^2 + 4x + 2 có được từ đồ thị hàm số y = x^2 – 4x + 4 như thế nào? A. Sang phải bốn đơn vị và lên trên hai đơn vị. B. Sang trái bốn đơn vị và xuống dưới hai đơn vị. C. Sang trái bốn đơn vị và lên trên hai đơn vị. D. Sang phải bốn đơn vị và xuống dưới hai đơn vị. [ads] + Cho tam giác ABC, D(1;-1) là chân đường phân giác của góc A, AB có phương trình 3x + 2y – 9 = 0, tiếp tuyến tại A của đường tròn ngoại tiếp tam giác có phương trình ∆: x + 2y – 7 = 0. Phương trình BC là ax + by + c = 0 với a, b, c là các số nguyên không có ước chung khác ±1. Tính a – b + c. + Thực hiện liên tiếp hai phép đối xứng tâm sẽ cho kết quả là: A. Một phép vị tự. B. Một phép tịnh tiến. C. Một phép đối xứng trục. D. Một phép đối xứng tâm. + Cho một tam giác vuông. Nếu tăng mỗi cạnh lên 2cm thì diện tích tăng 19cm2. Nếu giảm các cạnh góc vuông đi 3cm và 1cm thì diện tích giảm đi 12cm2. Tính chu vi tam giác ban đầu?
Đề khảo sát chất lượng lần 1 Toán 11 năm 2019 - 2020 trường Lê Xoay - Vĩnh Phúc
Đề khảo sát chất lượng lần 1 Toán 11 năm 2019 – 2020 trường Lê Xoay – Vĩnh Phúc mã đề 132, đề gồm 6 trang với 50 câu hỏi và bài toán dạng trắc nghiệm, thời gian làm bài 90 phút, kỳ thi được diễn ra trong giai đoạn giữa học kỳ 1 năm học 2019 – 2020. Trích dẫn đề khảo sát chất lượng lần 1 Toán 11 năm 2019 – 2020 trường Lê Xoay – Vĩnh Phúc : + Xét hai phép biến hình sau: (I) Phép biến hình F1 biến mỗi điểm M(x;y) thành điểm M'(-y;x). (II) Phép biến hình F2 biến mỗi điểm M(x;y) thành điểm M'(2x;2y). Phép biến hình nào trong hai phép biến hình trên là phép dời hình? A. Không có phép biến hình nào. B. Chỉ phép biến hình (I). C. Chỉ phép biến hình (II). D. Cả hai phép biến hình (I) và (II). + Trong mặt phẳng tọa độ Oxy cho đường thẳng d: 5x – 2y – 19 = 0 và đường tròn (C): x^2 + y^2 – 4x – 2y = 0. Gọi M là một điểm thuộc đường thẳng d và có tung độ âm. Biết rằng từ điểm M kẻ được hai tiếp tuyến MA, MB tới đường tròn (C) (A, B là hai tiếp điểm) sao cho AB = √10. Gọi I(a;b) là tâm đường tròn ngoại tiếp tam giác ABM. Tính a + b? [ads] + Đường thẳng d: xcosa + ysina + 2sina – 3cosa + 4 = 0 (a là tham số) luôn tiếp xúc với đường tròn nào trong các đường tròn sau đây? A. Đường tròn tâm I(3;-2) bán kính R = 4. B. Đường tròn tâm I(-3;-2) bán kính R = 4 . C. Đường tròn tâm O(0;0) bán kính R = 1. D. Đường tròn tâm I(-3;2) bán kính R = 4. + Trong mặt phẳng Oxy cho elip (E): x^2/25 + y^2/9 = 1 và bốn mệnh đề sau: (I) Elip (E) có các tiêu điểm F1(-4;0) và F2(4;0). (II) Elip (E) có tiêu cự bằng 8. (III) Elip (E) nhận điểm A(-5;0) là đỉnh. (IV) Elip (E) có độ dài trục nhỏ bằng 3. Có tất cả bao nhiêu mệnh đề đúng trong các mệnh đề trên? + Cho hình chữ nhật có O là giao điểm hai đường chéo. Hỏi có tất cả bao nhiêu phép quay tâm O góc quay a (0 ≤ a ≤ 3pi) biến hình chữ nhật trên thành chính nó?