Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề tuyển sinh môn Toán (chuyên) năm 2023 2024 sở GD ĐT Sóc Trăng

Nội dung Đề tuyển sinh môn Toán (chuyên) năm 2023 2024 sở GD ĐT Sóc Trăng Bản PDF - Nội dung bài viết Đề tuyển sinh môn Toán (chuyên) năm 2023 2024 sở GD ĐT Sóc Trăng Đề tuyển sinh môn Toán (chuyên) năm 2023 2024 sở GD ĐT Sóc Trăng Chào các thầy cô giáo và các em học sinh, Sytu xin giới thiệu đến mọi người đề chính thức cho kỳ thi tuyển sinh vào lớp 10 THPT môn Toán (chuyên) năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Sóc Trăng. Trích dẫn Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2023 – 2024 sở GD&ĐT Sóc Trăng: - Trường Trung học phổ thông H dự định tổ chức cho 315 học sinh về nguồn tại Di tích khu căn cứ Tỉnh ủy thuộc địa phận xã Mỹ Phước, huyện Mỹ Tú, tỉnh Sóc Trăng. Nếu dùng loại xe nhỏ chở một lượt hết số học sinh thì phải hợp đồng nhiều hơn khi dùng loại xe lớn là 2 chiếc, biết rằng loại xe nhỏ mỗi xe chở ít hơn loại xe lớn là 10 học sinh. Tính số xe nhỏ mà Trường Trung học phổ thông H cần hợp đồng (Biết rằng số học sinh được chở trên mỗi xe là như nhau). - Yêu cầu vẽ hình khi chứng minh: Cho tam giác ABC nhọn (AB < AC) nội tiếp đường tròn tâm O. Các đường cao BE, CF cắt nhau tại H. a) Chứng minh AF.AB = AE.AC. b) Giả sử BAC = 60°, AB = 3 cm, AC = 4 cm. Tính diện tích tam giác ABC và diện tích tam giác AEF. c) Gọi M là trung điểm BC, tia MH cắt đường tròn (O) tại T, đường tròn ngoại tiếp tam giác BMF cắt đường thẳng AM tại điểm thứ hai là Q. Chứng minh rằng 6 điểm A, T, F, H, Q, E cùng nằm trên đường tròn. - Hai người cùng chơi trò chơi, khi bắt đầu chơi cả hai người đều 0 điểm. Sau mỗi ván chơi người thắng được 2 điểm, người thua được 0 điểm; nếu hoà thì mỗi người chơi cùng được 1 điểm. Hỏi sau một số ván chơi có thể xảy ra trường hợp một người được 20 điểm và người kia được 23 điểm không? Giải thích?

Nguồn: sytu.vn

Đọc Sách

Đề thi thử vào lớp 10 môn Toán 2018 trường Archimedes Academy Hà Nội lần 6
Nội dung Đề thi thử vào lớp 10 môn Toán 2018 trường Archimedes Academy Hà Nội lần 6 Bản PDF - Nội dung bài viết Đề Thi Thử Vào Lớp 10 Môn Toán 2018 Trường Archimedes Academy Hà Nội Lần 6 Đề Thi Thử Vào Lớp 10 Môn Toán 2018 Trường Archimedes Academy Hà Nội Lần 6 Đề thi thử vào lớp 10 môn Toán năm học 2017 – 2018 trường THCS Archimedes Academy – Hà Nội lần thứ 6 đã được tổ chức với nhiều bài toán thú vị. Đề thi gồm 5 bài toán tự luận, và thí sinh được phép làm bài trong khoảng thời gian 120 phút. Nội dung các bài toán trong đề bao gồm các chủ đề đa dạng như tính toán và rút gọn biểu thức, giải bài toán bằng cách lập phương trình hoặc hệ phương trình, biện luận hệ phương trình, bài toán tương giao giữa đường thẳng và parabol, bài toán về đường tròn, bài toán min – max. Kỳ thi đã diễn ra vào ngày 21 tháng 4 năm 2018, và đề thi đã được công bố lời giải chi tiết. Trích dẫn một số bài toán từ đề thi thử vào lớp 10 môn Toán: 1. Một ô tô di chuyển từ điểm A đến B cách nhau 260km. Sau khi đã đi được 120km với vận tốc dự định, xe tăng vận tốc thêm 10km/h trên quãng đường còn lại. Hãy tính vận tốc dự định của ô tô biết rằng xe đến đích B sớm hơn thời gian dự định 20 phút. 2. Cho hệ phương trình x + 2y = 3, x + my = 1 (với m là tham số). Tìm giá trị nguyên của m để hệ phương trình có nghiệm duy nhất với x và y là số nguyên. 3. Đưa ra parabol (P): y = x^2 và đường thẳng (d): y = -2mx – 4m (với m là tham số). a) Tìm m để đường thẳng (d) cắt parabol (P) tại hai điểm phân biệt A, B. b) Giả sử x1, x2 là hoành độ của A, B. Tìm m để |x1| + |x2| = 3.
Đề thi thử vào môn Toán năm 2018 trường Phan Huy Chú Hà Nội
Nội dung Đề thi thử vào môn Toán năm 2018 trường Phan Huy Chú Hà Nội Bản PDF - Nội dung bài viết Đề thi thử vào lớp 10 môn Toán năm 2018 trường Phan Huy Chú - Hà Nội Đề thi thử vào lớp 10 môn Toán năm 2018 trường Phan Huy Chú - Hà Nội Đề thi này được biên soạn nhằm giúp học sinh hiểu rõ cấu trúc và độ khó của đề thi, cũng như làm quen với hình thức thi để chuẩn bị tốt cho kỳ thi vào lớp 10 môn Toán. Đề gồm 1 trang với 5 bài toán tự luận, thời gian làm bài 120 phút, không tính thời gian phát đề. Đề thi cung cấp lời giải chi tiết và thang điểm cho học sinh tham khảo.
Đề thi thử tuyển sinh vào môn Toán đợt 1 trường Thăng Long Hà Nội
Nội dung Đề thi thử tuyển sinh vào môn Toán đợt 1 trường Thăng Long Hà Nội Bản PDF - Nội dung bài viết Đề thi thử môn Toán đợt 1 trường Thăng Long Hà Nội Đề thi thử môn Toán đợt 1 trường Thăng Long Hà Nội Đề thi thử tuyển sinh vào lớp 10 môn Toán đợt 1 trường Thăng Long – Hà Nội là bài kiểm tra đánh giá năng lực Toán của học sinh. Đề thi gồm 5 bài toán tự luận, thời gian làm bài là 120 phút (không tính thời gian giao đề). Kỳ thi được tổ chức vào ngày 25 tháng 02 năm 2018, và đề thi thử có lời giải chi tiết. Trích dẫn một phần đề thi thử: Bài toán 1: Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình: Một ô tô dự định đi từ A đến B trong một khoảng thời gian đã định. Nếu xe chạy với vận tốc 35 km/h thì đến B chậm mất 2 giờ. Nếu xe chạy với vận tốc 50km/h thì đến B sớm hơn 1 giờ. Tính quãng đường AB và thời gian dự định đi lúc ban đầu. Bài toán 2: Cho các số thực không âm x, y, z thỏa mãn: x ≤ 1, y ≤ 1, z ≤ 1 và x + y + z = 3/2. Tìm giá trị nhỏ nhất và giá trị lớn nhất của biểu thức P = x^2 + y^2 + z^2. Bài toán 3: Cho đường tròn tâm O, bán kính R. Điểm A thuộc đường tròn, BC là một đường kính (A ≠ B, A ≠ C). ... (có nội dung chi tiết bài toán 3) Các bài toán trong đề thi thử môn Toán đợt 1 trường Thăng Long Hà Nội được thiết kế để thử thách học sinh, đồng thời giúp họ rèn luyện kỹ năng giải quyết vấn đề và logic Toán.
Đề thi thử vào môn Toán năm học 2018 2019 trường Lương Thế Vinh Hà Nội
Nội dung Đề thi thử vào môn Toán năm học 2018 2019 trường Lương Thế Vinh Hà Nội Bản PDF - Nội dung bài viết Đề thi thử vào môn Toán năm học 2018 2019 trường Lương Thế Vinh Hà Nội Đề thi thử vào môn Toán năm học 2018 2019 trường Lương Thế Vinh Hà Nội Đề thi thử vào lớp 10 môn Toán năm học 2018 – 2019 trường Lương Thế Vinh – Hà Nội bao gồm trang với 5 bài toán tự luận, diễn ra vào ngày 14/01/2018. Cấu trúc đề thi thử vào lớp 10 môn Toán bao gồm: Câu 1: Bài toán về các biểu thức đại số Câu 2: Giải toán bằng cách lập phương trình và hệ phương trình Câu 3: Gồm 2 ý: + Ý 1: Giải hệ phương trình + Ý 2: Giải toán hàm số bậc nhất và vẽ đồ thị Câu 4: Bài toán hình học phẳng về đường tròn Câu 5: Tính giá trị lớn nhất và giá trị nhỏ nhất