Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề cương ôn tập học kì 1 Toán 8 năm 2021 - 2022 trường THCS Đoàn Thị Điểm - Hà Nội

Đề cương ôn tập học kì 1 Toán 8 năm 2021 – 2022 trường THCS Đoàn Thị Điểm – Hà Nội gồm 13 trang, bao gồm mục tiêu, nội dung ôn tập và bài tập tự luyện Toán 8, giúp học sinh lớp 8 rèn luyện để chuẩn bị cho kì thi kiểm tra chất lượng cuối học kì 1 Toán 8 năm học 2021 – 2022. PHẦN 1 . MỤC TIÊU. ĐẠI SỐ: – HS được ôn tập và củng cố lại các kiến thức về nhân, chia đa thức, bảy hằng đẳng thức đáng nhớ, các phương pháp phân tích đa thức thành nhân tử. Áp dụng giải các dạng bài tập có liên quan. – HS được ôn lại các phép toán về cộng trừ, nhân, chia phân thức đại số. Áp dụng giải các dạng bài tập có liên quan. – Rèn luyện tính cẩn thận khi thực hành, luyện tập làm các tập tổng hợp về rút gọn phân thức. Áp dụng giải các dạng bài tập có liên quan. HÌNH HỌC: – HS được ôn lại: Định nghĩa, các dấu hiệu nhận biết, tính chất các tứ giác đặc biệt như: hình thang, hình bình hành, hình chữ nhật, hình thoi, hình vuông. – Ôn lại công thức tính diện tích một số tứ giác đặc biệt như: Diện tích hình chữ nhật, diện tích hình vuông, diện tich tam giác. – Rèn luyện kĩ năng vẽ hình, phân tích đề bài tìm hướng giải, kĩ năng trình bày bài cho HS. PHẦN 2 . NỘI DUNG ÔN TẬP. A. LÍ THUYẾT: 1) Học thuộc các quy tắc nhân, chia đơn thức với đơn thức, đơn thức với đa thức, phép chia hai đa thức 1 biến. 2) Nắm vững và vận dụng được 7 hằng đẳng thức – các phương pháp phân tích đa thức thành nhân tử. 3) Nêu tính chất cơ bản của phân thức, các quy tắc đổi dấu – quy tắc rút gọn phân thức, tìm mẫu thức chung, quy đồng mẫu thức. 4) Học thuộc các quy tắc: cộng, trừ, nhân, chia các phân thức đại số. 5) Nêu định nghĩa tứ giác, định lý tổng các góc trong 1 tứ giác. 6) Định nghĩa hình thang, hình thang cân, tính chất & dấu hiệu nhận biết hình thang cân. 7) Định nghĩa, tính chất đường trung bình của tam giác, hình thang. 8) Định nghĩa, tính chất & dấu hiệu nhận biết hình bình hành, hình chữ nhật, hình thoi, hình vuông. 9) Định nghĩa về 2 điểm đối xứng với nhau qua 1 đường thẳng, qua 1 điểm. Tính chất của các hình đối xứng với nhau qua 1 điểm, qua 1 đường thẳng. 10) Các tính chất về diện tích đa giác, công thức tính diện tích hình chữ nhật, hình vuông, tam giác. B. BÀI TẬP: Dạng 1. Bài tập trắc nghiệm. Dạng 2. Biến đổi đồng nhất đơn thức, đa thức. Dạng 3. Biến đổi đồng nhất phân thức đại số. Dạng 4. Bài toán hình tổng hợp. Dạng 5. Bài tập nâng cao.

Nguồn: toanmath.com

Đọc Sách

Phương pháp phân tích đa thức thành nhân tử
Nội dung Phương pháp phân tích đa thức thành nhân tử Bản PDF - Nội dung bài viết Phương pháp phân tích đa thức thành nhân tử Phương pháp phân tích đa thức thành nhân tử Để giúp học sinh lớp 8 hiểu rõ hơn về cách phân tích đa thức thành nhân tử, tài liệu này bao gồm 74 trang hướng dẫn chi tiết các phương pháp cụ thể. Nhờ đó, việc học chương trình sẽ trở nên dễ dàng và hiệu quả hơn. Hãy tham khảo tài liệu này để cải thiện kiến thức của mình và nắm vững phương pháp phân tích đa thức.
Các hằng đẳng thức đáng nhớ và ứng dụng
Nội dung Các hằng đẳng thức đáng nhớ và ứng dụng Bản PDF - Nội dung bài viết Tuyển tập hằng đẳng thức đáng nhớ và ứng dụng Tuyển tập hằng đẳng thức đáng nhớ và ứng dụng Tài liệu này gồm 59 trang, bao gồm các hằng đẳng thức đáng nhớ và cách áp dụng chúng trong giải các bài toán, giúp học sinh lớp 8 tham khảo khi học chương trình toán học. Những hằng đẳng thức trong tài liệu giúp học sinh hiểu rõ hơn về quan hệ giữa các phép tính và là cơ sở quan trọng để giải các bài toán phức tạp.
Chuyên đề diện tích xung quanh và thể tích của hình chóp đều
Nội dung Chuyên đề diện tích xung quanh và thể tích của hình chóp đều Bản PDF - Nội dung bài viết Chuyên đề diện tích xung quanh và thể tích của hình chóp đều Chuyên đề diện tích xung quanh và thể tích của hình chóp đều Chuyên đề này bao gồm 12 trang tài liệu, tập trung vào việc giải quyết các bài toán liên quan đến diện tích xung quanh và thể tích của hình chóp đều. Tài liệu cung cấp một tóm tắt về lý thuyết cơ bản cần nắm vững, các phân dạng toán học và hướng dẫn chi tiết cách giải các dạng bài tập khác nhau. Tài liệu này còn tuyển chọn các bài tập từ dễ đến khó, từ cơ bản đến nâng cao, giúp học sinh có cơ hội ôn luyện và thử thách kỹ năng giải toán của mình. Mỗi bài tập đều có đáp án và lời giải chi tiết, giúp học sinh tự kiểm tra và hiểu rõ hơn về cách giải quyết vấn đề. Chuyên đề này hỗ trợ học sinh trong quá trình học tập chương trình Hình học lớp 8, chương 4 với các nội dung về hình lăng trụ đứng và hình chóp đều. Cụ thể, tài liệu bao gồm: A. BÀI GIẢNG CỦNG CỐ KIẾN THỨC: Công thức tính diện tích và thể tích của hình chóp đều. Công thức tính diện tích và thể tích của hình chóp cụt đều. B. VÍ DỤ MINH HỌA: Phần này cung cấp các ví dụ minh họa để học sinh có thể áp dụng kiến thức lý thuyết vào thực hành. C. PHIẾU BÀI TỰ LUYỆN: Bài tập đại lượng hình học để học sinh tự rèn luyện kỹ năng tính toán. Bài tập chứng minh giúp học sinh phát triển khả năng suy luận và biện minh. Tóm lại, tài liệu này là công cụ hữu ích giúp học sinh nắm vững kiến thức về diện tích xung quanh và thể tích của hình chóp đều, từ đó cải thiện kỹ năng giải toán và chuẩn bị tốt cho các bài kiểm tra và bài thi sắp tới.
Chuyên đề hình chóp đều, hình chóp cụt đều
Nội dung Chuyên đề hình chóp đều, hình chóp cụt đều Bản PDF - Nội dung bài viết Chuyên đề hình chóp đều, hình chóp cụt đều Chuyên đề hình chóp đều, hình chóp cụt đều Tài liệu này bao gồm 11 trang, cung cấp tóm tắt về lý thuyết về trọng tâm, phân dạng và hướng dẫn giải các dạng toán liên quan đến chuyên đề hình chóp đều và hình chóp cụt đều. Nội dung tài liệu bao gồm tuyển chọn các bài tập từ dễ đến khó, kèm theo đáp án và lời giải chi tiết, giúp học sinh hiểu rõ hơn về chương trình Hình học 8 chương 4 về Hình lăng trụ đứng, hình chóp đều. Trong tài liệu này, học sinh sẽ được củng cố kiến thức về hình chóp, hình chóp đều và hình chóp cụt đều. Hình chóp được định nghĩa là hình có mặt đáy là một đa giác và các mặt bên là các tam giác có chung đỉnh. Hình chóp đều là hình chóp có đáy là một đa giác đều, và các mặt bên là các tam giác cân bằng nhau có chung đỉnh. Còn hình chóp cụt đều thì được tạo ra khi cắt một hình chóp đều bằng một mặt phẳng song song với đáy. Bên cạnh đó, tài liệu cung cấp phương pháp giải toán chi tiết, từ việc biến đổi công thức tính các đại lượng đến những bài toán tự luận. Cuối cùng, tài liệu còn đi kèm với phiếu bài tập tự luyện với các dạng toán như biến đổi công thức và bài toán tự luận.