Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử THPT Quốc gia năm 2017 - 2018 môn Toán 11 trường Hải An - Hải Phòng

Đề thi thử THPT Quốc gia năm học 2017 – 2018 môn Toán 11 trường THPT Hải An – Hải Phòng gồm 4 trang với 50 câu hỏi trắc nghiệm, thời gian làm bài 90 phút, đề thi nhằm giúp học sinh khối 11 sớm làm quen với hình thức đề thi THPT Quốc gia, đồng thời từng bước ôn luyện kiến thức Toán 11 nhằm chuẩn bị cho kỳ thi năm sau, đề thi có đáp án (gạch chân). Trích dẫn đề thi thử Toán 11 : + Bên cạnh con đường trước khi vào thành phố người ta xây một ngọn tháp đèn lộng lẫy. Ngọn tháp có dạng một hình chóp tứ giác S.ABCD có đáy ABCD là một hình vuông, SA = SB = SC = SD = 600m và góc ASB = BSC = CSD = DSA = 15 độ. Do có sự cố đường dây điện tại điểm Q (là trung điểm của SA) bị hỏng, người ta tạo ra một con đường từ A đến Q gồm 4 đoạn thẳng AM, MN, NP và PQ (Hình vẽ). Để tích kiệm kinh phí, kĩ sư đã nghiên cứu và có được chiều dài đường cong từ A đến Q ngắn nhất. Khi đó hãy cho biết tỉ số k = (AM + MN)/(NP + PQ). + Từ tỉnh A đến tỉnh B có thể đi bằng ô tô, tàu hỏa, tàu thủy hoặc máy bay. Từ tỉnh B đến tỉnh C có thể đi bằng ô tô hoặc tàu hỏa. Biết rằng muốn đi từ tỉnh A đến tỉnh C bắt buộc phải đi qua tỉnh B. Số cách đi từ tỉnh A đến tỉnh C là? [ads] + Trong các mệnh đề sau, mệnh đề nào đúng: A. Hai đường thẳng không có điểm chung thì chéo nhau. B. Hai đường thẳng không song song thì chéo nhau. C. Hai đường thẳng không cắt nhau và không song song thì chéo nhau. D. Hai đường thẳng chéo nhau thì có không điểm chung.

Nguồn: toanmath.com

Đọc Sách

Đề ôn tập Toán 11 tháng 03 năm 2020 trường THPT chuyên Hà Nội Amsterdam
Do ảnh hưởng của tình hình dịch bệnh vi-rút Corona (COVID-19), học sinh khối 11 trường THPT chuyên Hà Nội – Amsterdam vẫn chưa thể đi học trở lại từ sau kỳ nghỉ lễ Tết Nguyên Đán 2020, điều này ảnh hưởng lớn đến việc tiếp thu kiến thức môn Toán 11. Để giúp các em có thể tự ôn tập tại nhà, tổ Toán – Tin học trường THPT chuyên Hà Nội – Amsterdam đã biên soạn bộ đề ôn tập môn Toán 11 giai đoạn tháng 03 năm 2020. Đề ôn tập Toán 11 tháng 03 năm 2020 trường THPT chuyên Hà Nội – Amsterdam gồm có 07 trang với 03 đề, chọn lọc các câu hỏi trắc nghiệm và tự luận từ cơ bản đến nâng cao giúp học sinh khối 11 tự ôn luyện. Trích dẫn đề ôn tập Toán 11 tháng 03 năm 2020 trường THPT chuyên Hà Nội – Amsterdam : + Tìm mệnh đề sai trong các mệnh đề sau: A. Một hình bình hành có thể là hình chiếu song song của một hình thang nào đó. B. Một hình bình hành có thể xem là hình chiếu song song của một hình vuông nào đó. C. Một tam giác có thể là hình chiếu song song của tam giác đều nào đó. D. Một đoạn thẳng có thể là hình chiếu song song của tam giác nào đó. [ads] + Cho hình lăng trụ tam giác ABC.A’B’C’. Gọi G là trọng tâm của tam giác ABC. a) Xác định giao điểm I của A’G với mặt phẳng (AB’C’)? Tính IA’:IG? b) Gọi (P) là mặt phẳng qua G và song song với mặt phẳng (AB’C’). Xác định thiết diện của hình lăng trụ bị cắt bởi mặt phẳng (P)? c) Biết tam giác AB’C’ là tam giác đều cạnh a, tính diện tích thiết diện ở trên? d) Gọi (d) và (d’) lần lượt là giao tuyến của mp (P) với mp (ABB’A’) và mp (ACC’A’). Chứng minh rằng d, d’, AA’ đồng qui. + Cho hình chóp tứ giác đều S.ABCD đỉnh S, cạnh đáy của hình chóp có độ dài bằng 2, chiều cao bằng h. Gọi C1(O; r) là hình cầu tâm O bán kính r nội tiếp hình chóp; gọi C2(K; R) là hình cầu tâm K bán kính R tiếp xúc với 8 cạnh của hình chóp. Biết rằng khoảng cách từ O đến mặt phẳng (ABCD) bằng khoảng cách từ K đến mặt phẳng (ABCD). 1. Chứng minh rằng r = (√(1 + h^2) − 1)/h. 2. Tính giá trị của h, từ đó suy ra thể tích của hình chóp.
Đề thi thử Toán 11 THPT Quốc gia 2020 lần 1 trường Ngô Quyền Hải Phòng
Chủ Nhật ngày 29 tháng 12 năm 2019, trường THPT Ngô Quyền – Hải Phòng tổ chức kỳ thi thử Trung học Phổ thông Quốc gia năm 2020 môn Toán 11 lần thứ nhất năm học 2019 – 2020. Đề thi thử Toán 11 THPT Quốc gia 2020 lần 1 trường Ngô Quyền – Hải Phòng mã đề 111 gồm có 06 trang với 50 câu trắc nghiệm, học sinh có 90 phút để làm bài thi. Trích dẫn đề thi thử Toán 11 THPT Quốc gia 2020 lần 1 trường Ngô Quyền – Hải Phòng : + Cho hình chóp S.ABCD có đáy ABCD là hình bình hành, O là giao điểm hai đường chéo AC và BD. Gọi I, J, K lần lượt là trung điểm các cạnh BC, AD, SC và H là một điểm trên cạnh BC, H không trùng với B. Gọi d là giao tuyến của hai mặt phẳng (SAH) và (IJK). Tìm mệnh đề sai trong các mệnh đề sau: A. d đi qua giao điểm của AH và KI đồng thời d song song với KO. B. d đi qua giao điểm của AH và IJ đồng thời d song song với SA. C. d đi qua giao điểm của AH và IJ đồng thời d song song với KO. D. d đi qua giao điểm của SH và IK đồng thời d song song với SA. + Mệnh đề nào sau đây đúng? A. Qua ba điểm xác định một và chỉ một mặt phẳng. B. Qua ba điểm phân biệt không thẳng hàng xác định một và chỉ một mặt phẳng. C. Qua ba điểm phân biệt xác định một và chỉ một mặt phẳng. D. Qua ba điểm phân biệt không thẳng hàng xác định hai mặt phẳng phân biệt. [ads] + Một nhân viên được nhận vào làm việc ở tập đoàn S với mức lương 10.000.000 VND/tháng và thỏa thuận nếu hoàn thành tốt công việc thì sau một quý (3 tháng) công ty sẽ tăng cho anh thêm 500.000 VND/tháng. Hỏi sau ít nhất bao nhiêu năm thì lương của anh ta sẽ được trên 20.000.000 VND/tháng (giả thiết: nhân viên đó luôn hoàn thành tốt công việc). + Một dãy phố có bảy cửa hàng bán đồ lưu niệm. Có bảy khách hàng, mỗi người chọn vào một trong bảy cửa hàng đó một cách ngẫu nhiên. Tính xác suất để một cửa hàng có một khách vào, một cửa hàng có hai khách vào, một cửa hàng có bốn khách vào và bốn cửa hàng còn lại không có người khách nào vào. + Cho hình chóp S.ABCD có đáy ABCD là hình thang cân, đáy nhỏ AB = n, đáy lớn CD = m (m, n là các số thực dương, m > n). Các cạnh bên thỏa mãn SA = SB, SC = SD. Gọi O là giao điểm hai đường chéo AC và BD. Lấy điểm I trên đoạn SO sao cho IS/IO = k. Gọi (alpha) là mặt phẳng đi qua AI và song song với CD. Tìm điều kiện của k để thiết diện của hình chóp S.ABCD với mặt phẳng (alpha) là một hình chữ nhật.
Đề khảo sát Toán 11 lần 2 năm 2019 - 2020 trường Tam Dương - Vĩnh Phúc
Ngày … tháng 01 năm 2020, trường THPT Tam Dương, tỉnh Vĩnh Phúc tổ chức kỳ thi khảo sát kiến thức THPT môn Toán 11 lần 2 năm học 2019 – 2020. Đề khảo sát Toán 11 lần 2 năm 2019 – 2020 trường Tam Dương – Vĩnh Phúc mã đề 123 gồm 05 trang với 50 câu trắc nghiệm, thời gian làm bài 90 phút. Trích dẫn đề khảo sát Toán 11 lần 2 năm 2019 – 2020 trường Tam Dương – Vĩnh Phúc : + Xét phép thử gieo một con súc sắc cân đối và đồng chất hai lần liên tiếp. Gọi X là biến cố “Lần đầu xuất hiện mặt 6 chấm” và Y là biến cố “Lần thứ hai xuất hiện mặt 6 chấm”. Trong các khẳng định sau, khẳng định nào sai? A. X ∩ Y là biến cố “Tổng số chấm xuất hiện của hai lần gieo bằng 12”. B. X và Y là hai biến cố xung khắc. C. X ∪ Y là biến cố “Ít nhất một lần xuất hiện mặt 6 chấm”. D. X và Y là hai biến cố độc lập. + Trong hội chợ, một công ty sơn muốn xếp 1089 hộp sơn theo số lượng 1, 3, 5 … từ trên xuống dưới (số hộp sơn trên mỗi hàng xếp từ trên xuống dưới là các số lẻ liên tiếp – mô hình như hình bên dưới). Hàng cuối cùng có bao nhiêu hộp sơn? [ads] + Xét một bảng ô vuông gồm 4 x 4 ô vuông. Người ta điền vào mỗi ô vuông đó một trong hai số 1 hoặc −1 sao cho tổng các số trong mỗi hàng và tổng các số trong mỗi cột đều bằng 0. Hỏi có bao nhiêu cách? + Cho hình chóp S.ABCD có đáy ABCD là hình thang (AB // CD), cạnh AB = 3a, AD = CD = a. Tam giác SAB cân tại S, SA = 2a. Mặt phẳng (P) song song với SA, AB cắt các cạnh AD, BC, SC, SD theo thứ tự tại M, N, P, Q. Đặt AM = x (0 < x < a). Gọi x là giá trị để tứ giác MNPQ ngoại tiếp được đường tròn, bán kính đường tròn đó là? + Cho hai đường thẳng chéo nhau a và b. Lấy các điểm phân biệt A, B thuộc a, C, D thuộc b. Khẳng định nào sau đây đúng? A. AD cắt BC. B. AD và BC cùng nằm trên một mặt phẳng. C. AD song song với BC. D. AD chéo BC.