Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi giữa kì 2 Toán 9 năm 2020 - 2021 trường Lương Thế Vinh - Hà Nội

Đề thi giữa kì 2 Toán 9 năm học 2020 – 2021 trường THCS & THPT Lương Thế Vinh, thành phố Hà Nội gồm 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 90 phút. Trích dẫn đề thi giữa kì 2 Toán 9 năm 2020 – 2021 trường Lương Thế Vinh – Hà Nội : + Hai bạn An và Tâm được phân công chuẩn bị tài liệu cho buổi thuyết trình trước lớp về ý nghĩa của “Giờ trái đất”. Biết rằng nếu hai bạn cùng làm thì sau 2 giờ 24 phút sẽ xong. Nhưng khi làm chung được 1 giờ thì Tâm có việc bận phải về, còn một mình An làm nốt trong 2 giờ 20 phút nữa mới xong. Hỏi nếu mỗi bạn làm một mình thì sau bao lâu sẽ xong công việc? + Cho các đường thẳng (d): y = -2x + 3; (d’): y = (m – 1)x + 2m – 1 và parabol (P): y = x2. a) Tìm tọa độ giao điểm của (d) và (P). b) Tìm m biết đường thẳng (d’) song song với đường thẳng (d). Khi đó, giả sử (d’) cắt Ox tại A, cắt Oy tại B. Tính diện tích tam giác OAB. c) Tìm m để (d’) cắt (P) tại 2 điểm phân biệt D, E sao cho trung điểm I của DE nằm trên Oy. + Cho đường tròn (O;R) và điểm A nằm ngoài đường tròn. Kẻ tiếp tuyến AB với (O) (B là tiếp điểm); đường thẳng d đi qua A và cắt (O) tại C, D (C nằm giữa A và D). Gọi I là trung điểm của CD. a) Chứng minh các điểm A, B, I và O cùng nằm trên một đường tròn. b) Chứng minh AC.AD = AB2. c) Qua B kẻ đường thẳng vuông góc với OA, đường thẳng này cắt (O;R) tại E. Chứng minh AB là tiếp tuyến của (O;R) và góc BEA = 1/2 góc BIE. d) Khi đường thẳng d thay đổi sao cho BDE có ba góc nhọn, gọi H là trực tâm BDE. Tính OA theo R để H chạy trên đường tròn ngoại tiếp ABE.

Nguồn: toanmath.com

Đọc Sách

Đề giữa kì 2 Toán 9 năm 2023 - 2024 trường THCS Võ Trường Toản - BR VT
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra giữa học kì 2 môn Toán 9 năm học 2023 – 2024 trường THCS Võ Trường Toản, tỉnh Bà Rịa – Vũng Tàu; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề giữa kì 2 Toán 9 năm 2023 – 2024 trường THCS Võ Trường Toản – BR VT : + Giải bài toán bằng cách lập phương trình, hệ phương trình: Hai vòi nước cùng chảy vào bể không có nước thì sau 16 giờ đầy bể. Nếu người ta mở vòi thứ nhất chảy trong 3 giờ rồi khóa lại và mở vòi thứ hai chảy trong 6 giờ thì được 25% bể. Tính thời gian mỗi vòi chảy một mình đầy bể. + Cho đường tròn tâm O, đường kính AB, vẽ tia tiếp tuyến Bx. M là điểm thuộc đường tròn (M khác điểm chính giữa cung AB). Tiếp tuyến tại M cắt Bx tại C. a) Chứng minh: Tứ giác BCMO nội tiếp. b) Chứng minh: AM // OC. c) Kẻ MH AB gọi I là giao điểm của AC và MH. Chứng minh: IH = IM. + Trong một đường tròn, góc tạo bởi tia tiếp tuyến và dây cung và góc nội tiếp cùng chắn một cung thì: A. bằng một nửa. B. gấp đôi. C. bằng nhau.
Đề giữa kì 2 Toán 9 năm 2023 - 2024 trường THCS Ngọc Lâm - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra giữa học kì 2 môn Toán 9 năm học 2023 – 2024 trường THCS Ngọc Lâm, quận Long Biên, thành phố Hà Nội; đề thi có đáp án và hướng dẫn chấm điểm.
Đề giữa kì 2 Toán 9 năm 2023 - 2024 trường THCS Phúc Đồng - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra giữa học kì 2 môn Toán 9 năm học 2023 – 2024 trường THCS Phúc Đồng, quận Long Biên, thành phố Hà Nội; kỳ thi được diễn ra vào ngày 13 tháng 03 năm 2024; đề thi có đáp án và hướng dẫn chấm điểm.
Đề giữa học kỳ 2 Toán 9 năm 2023 - 2024 trường THCS Hai Bà Trưng - TP HCM
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra giữa học kỳ 2 môn Toán 9 năm học 2023 – 2024 trường THCS Hai Bà Trưng, quận 3, thành phố Hồ Chí Minh. Trích dẫn Đề giữa học kỳ 2 Toán 9 năm 2023 – 2024 trường THCS Hai Bà Trưng – TP HCM : + Cho phương trình: 2×2 + 3x – 2 = 0 có hai nghiệm là x1 và x2. a) Tính tổng và tích của hai nghiệm x1 và x2. b) Không giải phương trình, hãy tính giá trị của biểu thức: A = x12 + x22. + Bạn Bình tiêu thụ 10,4 ca-lo cho mỗi phút bơi và 4,8 ca-lo mỗi phút chạy bộ. Bạn Bình cần tiêu thụ tổng cộng 324 ca-lo trong 50 phút với hai hoạt động trên. Vậy bạn Bình cần bao nhiêu thời gian cho mỗi hoạt động? + Cho tam giác SMN nhọn nội tiếp đường tròn (O) (SM < SN). Ba đường cao SI, MF, NE của tam giác SMN cắt nhau tại D. a) Chứng minh EFNM là tứ giác nội tiếp. b) Đường thẳng SI cắt đường tròn (O) tại A (A khác S). Qua A vẽ đường thẳng vuông góc với SN, đường thẳng này cắt MN tại H, cắt đường tròn (O) tại K (K khác A). Chứng minh HA.HK = HM.HN. c) Gọi T là giao điểm của FE và NM; ST cắt đường tròn (O) tại C (C khác S). Chứng minh ba điểm K, F, C thẳng hàng.