Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Bài toán khoảng cách trong không gian - Phạm Hồng Phong

Tài liệu gồm 14 trang hướng dẫn phương pháp xác định và tính khoảng cách trong không gian và các ví dụ áp dụng có hướng dẫn giải. A. Tóm tắt lý thuyết Loại 1. Khoảng cách từ điểm đến mặt phẳng, một đường thẳng Định nghĩa: Khoảng cách từ một điểm đến mặt phẳng (hoặc đường thẳng) bằng khoảng cách từ điểm đó tới hình chiếu vuông góc của nó lên mặt phẳng (hoặc đường thẳng). Bài toán cơ bản: Nhiều bài toán tính khoảng cách từ điểm tới mặt phẳng, từ điểm tới đường thẳng có thể quy về bài toán cơ bản sau: Cho hình chóp S.ABC có SA vuông góc với đáy. Tính khoảng cách từ điểm A đến mặt phẳng (SBC) và khoảng cách từ điểm S đến đường thẳng BC. [ads] Loại 2. Khoảng cách giữa hai đường thẳng chéo nhau. Đường vuông góc chung của hai đường thẳng Định nghĩa: Cho hai đường thẳng chéo nhau a và b: + Đường thẳng d cắt a, b và vuông góc với a, b được gọi là đường vuông góc chung của a và b. + Nếu đường vuông góc chung cắt a, b lần lượt tại M, N thì độ dài đoạn thẳng MN được gọi là khoảng cách giữa hai đường thẳng chéo nhau a và b. Cách tìm đường vuông góc chung của hai đường thẳng chéo nhau + Phương pháp tổng quát: Cho hai đường thẳng chéo nhau a, b . Gọi (α) là mặt phẳng chứa b và song song với a, a ‘ là hình chiếu vuông góc của a lên (α). Đặt N = a’ ∩ b, gọi Δ là đường thẳng qua N và vuông góc với (α) ⇒ Δ là đường vuông góc chung của a và b. Đặt M = Δ ∩ a ⇒ khoảng cách giữa a và b là độ dài đường thẳng MN. + Trường hợp đặc biệt: Cho hai đường thẳng chéo nhau và vuông góc với nhau a, b . Gọi (α) là mặt phẳng chứa b và vuông góc với a. Đặt M = a ∩ (α). Gọi N là chân đường vuông góc hạ từ M xuống b ⇒ MN là đường vuông góc chung của a, b và khoảng cách giữa a, b là độ dài đoạn thẳng MN. Nhận xét: Cho hai đường thẳng chéo nhau a và b. Các nhận xét nhau đây cho ta cách khác để tính khoảng cách giữa a và b ngoài cách dựng đường vuông góc chung: + Nếu (α) là mặt phẳng chứa a và song song với b thì khoảng cách giữa hai đường thẳng bằng khoảng cách giữa b và (α). + Nếu (α), (β) là các mặt phẳng song song với nhau, lần lượt chứa a, b thì khoảng cách giữa hai đường thẳng bằng khoảng cách giữa (α) và (β) B. Một số ví dụ C. Bài tập

Nguồn: toanmath.com

Đọc Sách

Bài giảng khoảng cách trong không gian
Tài liệu gồm 32 trang, tóm tắt lý thuyết trọng tâm, các dạng toán và bài tập chủ đề khoảng cách trong không gian, có đáp án và lời giải chi tiết, giúp học sinh lớp 11 tham khảo khi học chương trình Hình học 11 chương 3: Vectơ Trong Không Gian, Quan Hệ Vuông Góc. Tài liệu được biên soạn bởi nhóm tác giả: PGS.TS Lê Văn Hiện, Trần Minh Ngọc, Nguyễn Hồng Quân, Nguyễn Đình Hoàn, Lý Công Hiếu, Nguyễn Văn Vũ, Nguyễn Đỗ Chiến, Nguyễn Ngọc Chi, Nguyễn Văn Ái, Nguyễn Hoàng Việt, Nguyễn Thị Thắm, Nguyễn Vũ Minh, Phan Xuân Dương, Nguyễn Hữu Bắc. Kiến thức: + Nắm vững khái niệm khoảng cách từ một điểm đến đường thẳng, từ một điểm đến mặt phẳng và khoảng cách đường thẳng đến mặt phẳng. + Nắm được khái niệm khoảng cách giữa hai đường thẳng, khoảng cách giữa hai mặt phẳng. + Nắm vững các tính chất về khoảng cách. Kĩ năng: + Xác định được hình chiếu của một điểm đến đường thẳng và trên mặt phẳng. + Biết cách tính khoảng cách trong từng trường hợp. I. LÍ THUYẾT TRỌNG TÂM. II. CÁC DẠNG BÀI TẬP. Dạng 1. Khoảng cách từ một điểm tới một mặt phẳng. Dạng 2: Khoảng cách giữa hai đường thẳng chéo nhau. + Bài toán 1. Tính khoảng cách hai đường thẳng chéo nhau a và b trường hợp a vuông góc b. + Bài toán 2. Tính khoảng cách hai đường thẳng chéo nhau a và b không vuông góc. III. ĐÁP ÁN VÀ HƯỚNG DẪN GIẢI.
Bài giảng đường thẳng vuông góc với mặt phẳng, hai mặt phẳng vuông góc
Tài liệu gồm 50 trang, tóm tắt lý thuyết trọng tâm, các dạng toán và bài tập chủ đề đường thẳng vuông góc với mặt phẳng, hai mặt phẳng vuông góc, có đáp án và lời giải chi tiết, giúp học sinh lớp 11 tham khảo khi học chương trình Hình học 11 chương 3: Vectơ Trong Không Gian, Quan Hệ Vuông Góc. Tài liệu được biên soạn bởi nhóm tác giả: PGS.TS Lê Văn Hiện, Trần Minh Ngọc, Nguyễn Hồng Quân, Nguyễn Đình Hoàn, Lý Công Hiếu, Nguyễn Văn Vũ, Nguyễn Đỗ Chiến, Nguyễn Ngọc Chi, Nguyễn Văn Ái, Nguyễn Hoàng Việt, Nguyễn Thị Thắm, Nguyễn Vũ Minh, Phan Xuân Dương, Nguyễn Hữu Bắc. Kiến thức: + Nắm vững điều kiện để đường thẳng vuông góc với mặt phẳng, điều kiện để hai mặt phẳng vuông góc. + Nắm được định lý ba đường vuông góc. + Phát biểu và vận dụng được cách tìm thiết diện bằng quan hệ vuông góc. Kĩ năng: + Chứng minh được đường thẳng vuông góc với mặt phẳng. + Chứng minh được hai mặt phẳng vuông góc. + Xác định được thiết diện và giải được các bài toán liên quan đến chu vi và diện tích của thiết diện. I. LÍ THUYẾT TRỌNG TÂM. II. CÁC DẠNG BÀI TẬP. Dạng 1: Đường thẳng vuông góc với mặt phẳng. + Bài toán 1: Chứng minh đường thẳng vuông góc với mặt phẳng. + Bài toán 2: Chứng minh hai đường thẳng vuông góc. Dạng 2: Hai mặt phẳng vuông góc. Dạng 3: Dùng mối quan hệ vuông góc giải bài toán thiết diện. III. ĐÁP ÁN VÀ HƯỚNG DẪN GIẢI.
Bài giảng góc trong không gian
Tài liệu gồm 36 trang, tóm tắt lý thuyết trọng tâm, các dạng toán và bài tập chủ đề góc trong không gian, có đáp án và lời giải chi tiết, giúp học sinh lớp 11 tham khảo khi học chương trình Hình học 11 chương 3: Vectơ Trong Không Gian, Quan Hệ Vuông Góc. Tài liệu được biên soạn bởi nhóm tác giả: PGS.TS Lê Văn Hiện, Trần Minh Ngọc, Nguyễn Hồng Quân, Nguyễn Đình Hoàn, Lý Công Hiếu, Nguyễn Văn Vũ, Nguyễn Đỗ Chiến, Nguyễn Ngọc Chi, Nguyễn Văn Ái, Nguyễn Hoàng Việt, Nguyễn Thị Thắm, Nguyễn Vũ Minh, Phan Xuân Dương, Nguyễn Hữu Bắc. Kiến thức: + Nắm được khái niệm góc giữa hai đường thẳng, góc giữa đường thẳng và mặt phẳng, góc giữa hai mặt phẳng. + Nắm được phương pháp tính góc trong mỗi trường hợp cụ thể. Kĩ năng: + Thành thạo các bước tính góc giữa hai đường thẳng, góc giữa đường thẳng và mặt phẳng, góc giữa hai mặt phẳng. + Vận dụng các quy tắc tính góc vào giải các bài tập liên quan. I. LÍ THUYẾT TRỌNG TÂM. II. CÁC DẠNG BÀI TẬP. Dạng 1. Góc giữa hai đường thẳng. Dạng 2. Góc giữa đường thẳng và mặt phẳng. + Bài toán 1. Bài tập củng cố lý thuyết. + Bài toán 2. Xác định góc giữa đường thẳng và mặt phẳng. Dạng 3. Góc giữa hai mặt phẳng. + Bài toán 1. Các bài tập củng cố lý thuyết. + Bài toán 2. Xác định góc giữa hai mặt phẳng bằng cách dùng định nghĩa. + Bài toán 3. Xác định góc giữa hai mặt phẳng dựa trên giao tuyến. + Bài toán 4. Xác định góc giữa hai mặt phẳng bằng cách dùng đinh lý hình chiếu. III. ĐÁP ÁN VÀ HƯỚNG DẪN GIẢI.
Bài giảng vectơ trong không gian, hai đường thẳng vuông góc
Tài liệu gồm 37 trang, tóm tắt lý thuyết trọng tâm, các dạng toán và bài tập chủ đề vectơ trong không gian, hai đường thẳng vuông góc, có đáp án và lời giải chi tiết, giúp học sinh lớp 11 tham khảo khi học chương trình Hình học 11 chương 3: Vectơ Trong Không Gian, Quan Hệ Vuông Góc. Tài liệu được biên soạn bởi nhóm tác giả: PGS.TS Lê Văn Hiện, Trần Minh Ngọc, Nguyễn Hồng Quân, Nguyễn Đình Hoàn, Lý Công Hiếu, Nguyễn Văn Vũ, Nguyễn Đỗ Chiến, Nguyễn Ngọc Chi, Nguyễn Văn Ái, Nguyễn Hoàng Việt, Nguyễn Thị Thắm, Nguyễn Vũ Minh, Phan Xuân Dương, Nguyễn Hữu Bắc. Kiến thức: + Trình bày được các tính chất, quy tắc biểu diễn vectơ. + Phát biểu được tích vô hướng của hai vectơ, góc giữa hai đường thẳng. Kĩ năng: + Chứng minh được các đẳng thức vectơ, biểu diễn được vectơ theo các vectơ không trùng phương với nó. + Nắm được phương pháp chứng minh sự cùng phương của hai vectơ, tìm được điều kiện của ba vectơ đồng phẳng. + Tính được góc giữa hai đường thẳng. Vận dụng được tích vô hướng của hai vectơ để giải các bài toán. I. LÍ THUYẾT TRỌNG TÂM. II. CÁC DẠNG BÀI TẬP. Dạng 1: Vectơ trong không gian. + Bài toán 1. Xác định vectơ và chứng minh đẳng thức vectơ. + Bài toán 2. Chứng minh ba vectơ đồng phẳng, ba điểm thẳng hàng. Dạng 2. Hai đường thẳng vuông góc. + Bài toán 1. Tính góc giữa hai đường thẳng (chứng minh hai đường thẳng vuông góc trong hình lăng trụ và hình hộp). + Bài toán 2. Tính góc giữa hai đường thẳng (hai đường thẳng vuông góc) trong hình chóp. III. ĐÁP ÁN VÀ HƯỚNG DẪN GIẢI.