Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi chọn học sinh giỏi lớp 12 môn Toán cấp tỉnh năm 2021 2022 sở GD ĐT Gia Lai

Nội dung Đề thi chọn học sinh giỏi lớp 12 môn Toán cấp tỉnh năm 2021 2022 sở GD ĐT Gia Lai Bản PDF Thứ Tư ngày 22 tháng 12 năm 2021, sở Giáo dục và Đào tạo tỉnh Gia Lai tổ chức kỳ thi chọn học sinh giỏi lớp 12 cấp tỉnh môn Toán năm học 2021 – 2022. Đề thi chọn học sinh giỏi Toán lớp 12 cấp tỉnh năm 2021 – 2022 sở GD&ĐT Gia Lai gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 180 phút (không kể thời gian phát đề). Trích dẫn đề thi chọn học sinh giỏi Toán lớp 12 cấp tỉnh năm 2021 – 2022 sở GD&ĐT Gia Lai : + Cho dãy số (un) xác định bởi u1 = 3 và n.u_n+1 = 2(n + 1)un – n – 2 với mọi n >= 1. a) Chứng minh rằng mọi số hạng của dãy đều là số nguyên. b) Chứng minh rằng với p là số nguyên tố lẻ bất kỳ, luôn tồn tại hai số hạng liên tiếp của dãy là bội của p. + Cho tam giác ABC nhọn, có AB < BC, nội tiếp đường tròn (O), hai đường cao AE và CF cắt nhau tại H (với E thuộc BC, F thuộc AB). Gọi M là trung điểm của cạnh AC. Tiếp tuyến của đường tròn (O) tại A và C cắt nhau tại Z. Gọi X là giao điểm của ZA và EF, Y là giao điểm của ZC và EF. Đường tròn ngoại tiếp tam giác BEF cắt đường tròn (O) tại điểm D (D khác B). a) Chứng minh rằng ba điểm M, H và D thẳng hàng. b) Chứng minh rằng bốn điểm D, X, Z và Y cùng nằm trên một đường tròn. + Trong một tòa nhà có một số phòng nào đó, trong mỗi phòng có một bóng đèn và một công tắc, công tắc ở mỗi phòng được nối với một số phòng nào đó. Khi ta bấm công tắc tại một phòng thì sẽ làm thay đổi trạng thái của bóng đèn trong phòng đó và các phòng được nối với công tắc này (bóng đang sáng sẽ tắt còn bóng đang tắt sẽ sáng). Chứng minh rằng, nếu ban đầu tất cả các bóng đèn đều tắt thì sau một số hữu hạn lần bấm công tắt sẽ làm cho tất cả các bóng đèn đều sáng.

Nguồn: sytu.vn

Đọc Sách

Đề thi chọn học sinh giỏi Toán 12 năm 2023 - 2024 sở GDĐT Nam Định
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn học sinh giỏi môn Toán 12 THPT năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Nam Định; đề thi có đáp án và hướng dẫn chấm điểm mã đề 101 – 102 – 103 – 104. Trích dẫn Đề thi chọn học sinh giỏi Toán 12 năm 2023 – 2024 sở GD&ĐT Nam Định : + Cho hình chóp S.ABC có SA vuông góc với mặt phẳng (ABC), BAC = 90◦ và SA = BC. Gọi E, F lần lượt là hình chiếu vuông góc của A lên SB, SC; M là trung điểm của SA và G là trọng tâm của tam giác ABC. Tính tỉ số V1 V2 với V1, V2 lần lượt là thể tích của các khối tứ diện MAEF và AEF G. + Cho hình tứ diện ABCD có AB, AC, AD đôi một vuông góc với nhau và có độ dài cùng bằng 2a. Gọi E và F lần lượt là trung điểm BC, BD. Tính thể tích của khối chóp A.EF DC. + Cho đa giác đều (H) có 24 đỉnh, chọn ngẫu nhiên 4 đỉnh của hình (H). Tính xác suất để 4 đỉnh được chọn tạo thành một hình chữ nhật không phải là hình vuông.