Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi học sinh giỏi lớp 9 môn Toán năm 2022 2023 phòng GD ĐT thành phố Thái Nguyên

Nội dung Đề thi học sinh giỏi lớp 9 môn Toán năm 2022 2023 phòng GD ĐT thành phố Thái Nguyên Bản PDF - Nội dung bài viết Đề thi học sinh giỏi Toán lớp 9 năm 2022 – 2023 phòng GD&ĐT thành phố Thái Nguyên Đề thi học sinh giỏi Toán lớp 9 năm 2022 – 2023 phòng GD&ĐT thành phố Thái Nguyên Xin chào quý thầy cô giáo và các em học sinh lớp 9. Hôm nay, Sytu xin giới thiệu đến mọi người đề thi chọn học sinh giỏi môn Toán lớp 9 năm học 2022 – 2023 do phòng Giáo dục và Đào tạo UBND thành phố Thái Nguyên tổ chức. Đề thi sẽ bao gồm 05 bài toán tự luận, với thời gian làm bài là 150 phút. Dưới đây là một số câu hỏi trích dẫn từ đề thi: Trong mặt phẳng tọa độ Oxy, cho đường thẳng (d): y = (m – 2)x + 3 (m khác 2). Tìm tất cả các giá trị của tham số m để đường thẳng (d) cắt Ox tại điểm A, cắt Oy tại điểm B sao cho ABO = 30 độ. Cho nửa đường tròn tâm O, đường kính AB, điểm M di động trên nửa đường tròn đó (M khác A, M khác B). Gọi điểm H là hình chiếu vuông góc của điểm M trên đường thẳng AB. Vẽ đường tròn đường kính AH, đường tròn đường kính BH. Đường thẳng MA cắt đường tròn đường kính AH tại điểm E (E khác A). Đường thẳng MB cắt đường tròn đường kính BH tại điểm F (F khác B). a. Chứng minh ME.MA = MF.MB. b. Chứng minh ba điểm M, K, G thẳng hàng. c. Chứng minh MH^3 = AB.AE.BF. d. Xác định vị trí của điểm M để diện tích tứ giác IEFJ đạt giá trị lớn nhất, với AB = 2R. Cho số tự nhiên n bất kỳ. Tìm tất cả các số nguyên tố p sao cho số A = 2026n^2 + 1014(n + p) luôn viết được dưới dạng hiệu của hai số chính phương. Hy vọng rằng đề thi sẽ giúp các em học sinh rèn luyện và phát triển năng lực Toán của mình. Chúc các em thành công!

Nguồn: sytu.vn

Đọc Sách

Đề thi học sinh giỏi cấp tỉnh Toán 9 năm 2020 - 2021 sở GDĐT Nghệ An
Đề thi học sinh giỏi cấp tỉnh Toán 9 năm học 2020 – 2021 sở GD&ĐT Nghệ An gồm đề bảng A và đề bảng B, đề thi có đáp án và lời giải chi tiết (lời giải được thực hiện bởi các thành viên Tạp Chí Và Tư Liệu Toán Học). Trích dẫn đề thi học sinh giỏi cấp tỉnh Toán 9 năm 2020 – 2021 sở GD&ĐT Nghệ An : + Cho tam giác nhọn ABC có D, E, F lần luợt là chân các đường cao kẻ từ ba đỉnh A, B, C của tam giác. Gọi H là trực tâm tam giác ABC và K là trung điềm của HC. a) Chứng minh rằng 4 điểm E, K, D, F cùng thuộc một dường tròn. b) Đường thẳng đi qua K song song với BC cắt DF tại M. Trên tia DE lấy điểm P sao cho MAP = BAC. Chứng minh rằng SAMF/SAMP = MF/MP (trong đó SAMF, SAMP lần lượt là diện tích các tam giác AMF và AMP). + Cho các số thực dương x, y, z thỏa mãn điều kiện x2 + y2 + z = 3xy. Chứng minh rằng. + Cho đa giác đều có 2021 đỉnh, sao cho mỗi đỉnh của đa giác đó chỉ được tô bằng một trong hai màu xanh hoặc đỏ. Chứng minh rằng tồn tại 3 đỉnh của đa giác đã cho là các đỉnh của một tam giác cân mà các đỉnh đó được tô cùng một màu.
Đề thi học sinh giỏi Toán THCS năm 2020 - 2021 sở GDĐT An Giang
Ngày 20 tháng 03 năm 2021, sở Giáo dục và Đào tạo tỉnh An Giang tổ chức kỳ thi chọn học sinh giỏi cấp Trung học Cơ sở môn Toán năm học 2020 – 2021. Đề thi học sinh giỏi Toán THCS năm 2020 – 2021 sở GD&ĐT An Giang gồm 01 trang với 06 bài toán dạng tự luận, thời gian học sinh làm bài thi là 150 phút.
Đề thi học sinh giỏi Toán 9 năm 2020 - 2021 sở GDĐT thành phố Hồ Chí Minh
Thứ Tư ngày 17 tháng 03 năm 2021, sở Giáo dục và Đào tạo thành phố Hồ Chí Minh tổ chức kỳ thi chọn học sinh giỏi lớp 9 cấp thành phố môn Toán năm học 2020 – 2021. Đề thi học sinh giỏi Toán 9 năm 2020 – 2021 sở GD&ĐT thành phố Hồ Chí Minh gồm 01 trang với 06 bài toán dạng tự luận, thời gian học sinh làm bài thi là 120 phút. Trích dẫn đề thi học sinh giỏi Toán 9 năm 2020 – 2021 sở GD&ĐT thành phố Hồ Chí Minh : + Cho tam giác ABC vuông tại A có đường phân giác trong BD (D thuộc AC). Đường tròn (BCD) cắt cạnh AB tại E. Chứng minh AE + AB = BC. + Cho bốn số thực a, b, c, d thỏa điều kiện a2 + b2 + c2 + d2 = 4. Chứng minh bất đẳng thức: (a + 2)(b + 2) >= cd. + Cho tứ giác ABCD (AB không song song với CD) nội tiếp đường tròn (O) và M là điểm chính giữa của cung nhỏ AB. Các dây MC, MD cắt AB lần lượt tại các điểm F, E. a) Chứng minh tứ giác CDEF nội tiếp. b) Gọi I là giao điểm của MC và BD. Gọi J là giao điểm của MD và AC. Chứng minh: IJ song song với AB. c) Đường thẳng IJ cắt AD, BC, CD lần lượt tại các điểm P, Q, K. Chứng minh: KP.KQ = KI.KJ.
Đề thi chọn học sinh giỏi Toán THCS năm 2020 - 2021 sở GDĐT Yên Bái
Thứ Sáu ngày 12 tháng 03 năm 2021, sở Giáo dục và Đào tạo tỉnh Yên Bái tổ chức kỳ thi chọn học sinh giỏi môn Toán bậc THCS năm học 2020 – 2021. Đề thi chọn học sinh giỏi Toán THCS năm 2020 – 2021 sở GD&ĐT Yên Bái gồm 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 150 phút.