Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề kiểm tra lớp 9 môn Toán năm 2023 2024 trường THCS Kim Giang Hà Nội

Nội dung Đề kiểm tra lớp 9 môn Toán năm 2023 2024 trường THCS Kim Giang Hà Nội Bản PDF - Nội dung bài viết Đề kiểm tra lớp 9 môn Toán năm học 2023 - 2024 trường THCS Kim Giang Hà Nội Đề kiểm tra lớp 9 môn Toán năm học 2023 - 2024 trường THCS Kim Giang Hà Nội Chúng tôi xin giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra môn Toán lớp 9 năm học 2023 - 2024 tại trường THCS Kim Giang, Hà Nội. Kỳ thi sẽ diễn ra vào ngày 22 tháng 09 năm 2023. Nội dung của đề kiểm tra Toán lớp 9 năm 2023 - 2024 trường THCS Kim Giang - Hà Nội bao gồm các câu hỏi sau: 1) Cho hai biểu thức. a) Tính giá trị của A khi x = 9. b) Rút gọn biểu thức B. c) Biết P = A.B. Tìm tất cả các giá trị nguyên của x để biểu thức P có giá trị âm. 2) Giải bài toán: Một tổ sản xuất dự định làm một số sản phẩm trong 20 ngày với năng suất định trước. Do tăng năng suất thêm 5 sản phẩm mỗi ngày, tổ đó đã hoàn thành kế hoạch sớm hơn thời hạn dự định 1 ngày và còn vượt mức kế hoạch 60 sản phẩm. Hỏi tổ đó đã sản xuất được bao nhiêu sản phẩm? 3) Cho tam giác ABC và đường cao AH. Gọi I, K lần lượt là hình chiếu của H trên AB, AC. Chứng minh: a) AH2 = AI.AB và AI.AB = AK.AC. b) Các tam giác ABC và AKI đồng dạng. c) Kẻ thêm các đường cao BD và CE của tam giác ABC. Chứng minh ED // IK và rằng SDEH = (1 - cos2A - cos2B - cos2C).SABC. Chúc các em học sinh lớp 9 trường THCS Kim Giang, Hà Nội đạt kết quả tốt trong kỳ thi của mình!

Nguồn: sytu.vn

Đọc Sách

Đề thi học sinh giỏi Toán 9 năm 2021 - 2022 phòng GDĐT thành phố Thái Nguyên
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi môn Toán 9 năm học 2021 – 2022 phòng Giáo dục và Đào tạo UBND thành phố Thái Nguyên, tỉnh Thái Nguyên. Trích dẫn đề thi học sinh giỏi Toán 9 năm 2021 – 2022 phòng GD&ĐT thành phố Thái Nguyên : + Cho tập hợp X = {0; 1; 2; …; 20}. Gọi Y là tập hợp con bất kỳ gồm có 7 phần tử của tập hợp X. Chứng minh rằng tồn tại hai tập hợp con A và B của tập hợp Y (A khác B, A khác Ø, B khác Ø) sao cho tổng các phần tử của tập hợp A bằng tổng các phần tử của tập hợp B. + Trong mặt phẳng tọa độ Oxy, gọi A, B lần lượt là tọa độ giao điểm của đường thẳng (d): y = x – 2 với trục hoành và trục tung. Tính diện tích tam giác OAB và khoảng cách từ điểm O đến đường thẳng (d). b. Giải phương trình x2 + 4 = 3x + 2x – 1. c. Trên parabol (P): y = x² lấy ba điểm phân biệt A(a;a2), B(b;b2), C(c;c2) sao cho a2 – b = b2 – c = c2 – a. Tính giá trị biểu thức sau: T = (a + b + 1)(b + c + 1)(c + a + 1). + Tìm số tự nhiên n sao cho n + 3 là số nguyên tố và 2n + 7 là lập phương của một số tự nhiên.
Đề thi học sinh giỏi Toán 9 năm 2021 - 2022 sở GDĐT thành phố Đà Nẵng
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi lớp 9 cấp thành phố môn Toán năm học 2021 – 2022 sở Giáo dục và Đào tạo thành phố Đà Nẵng; kỳ thi được diễn ra vào sáng thứ Năm ngày 24 tháng 02 năm 2022. Trích dẫn đề thi học sinh giỏi Toán 9 năm 2021 – 2022 sở GD&ĐT thành phố Đà Nẵng : + Trong phòng họp của công ty có một số ghế dài. Nếu xếp mỗi ghế bốn người dự họp thì thiếu một ghế. Nếu xếp mỗi ghế năm người dự họp thì thừa một ghế. Hỏi phòng họp của công ty có bao nhiêu ghế và bao nhiêu người dự họp? + Cho tam giác ABC, gọi M là trung điểm cạnh BC. Trên tia đối của tia CA lấy điểm D (DC > AC). Gọi N là trung điểm đoạn AD, kẻ đường thẳng qua D song song MN, cắt AB tại E. Hai đường thẳng EC và BD cắt nhau tại O. Chứng minh rằng tam giác ODE và tứ giác ABOC có diện tích bằng nhau. + Cho hình vuông ABCD tâm O. Lấy điểm E trên đoạn AB (E khác B và A), gọi F là giao điểm của CE và DA, đường thẳng DE cắt đường tròn (O;OA) tại điểm K (K khác D). Qua K kẻ tiếp tuyến KH với đường tròn (O;AB/2) (H thuộc (O;OA) và nằm khác phía với D qua FC). a) Chứng minh rằng tứ giác KHDA là hình thang cân. b) Chứng minh rằng F, K, H thẳng hàng.
Đề thi học sinh giỏi Toán 9 năm 2021 - 2022 phòng GDĐT Nam Từ Liêm - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi lớp 9 cấp quận môn Toán năm học 2021 – 2022 phòng Giáo dục và Đào tạo quận Nam Từ Liêm, thành phố Hà Nội; kỳ thi được diễn ra vào thứ Năm ngày 24 tháng 02 năm 2022. Trích dẫn đề thi học sinh giỏi Toán 9 năm 2021 – 2022 phòng GD&ĐT Nam Từ Liêm – Hà Nội : + Có 75 bóng đèn gồm 30 bóng xanh, 25 bóng đỏ, 20 bóng vàng. Mỗi lượt người ta đổi màu của hai bóng khác màu sang màu thứ ba (chẳng hạn đổi màu một bóng xanh và một bóng đỏ thành hai bóng vàng). Có thể xảy ra được toàn bộ 75 bóng đèn đều cùng một màu hay không? Vì sao? + Cho tam giác ABC nội tiếp đường tròn (O). Đường tròn tâm I nội tiếp tam giác ABC, tiếp xúc với 3 cạnh BC, CA, AB lần lượt tại các điểm M, N, P. Gọi Q là hình chiếu vuông góc của M xuống NP (Q thuộc NP). Kẻ BH, CT lần lượt vuông góc với đường thẳng PN (H và T thuộc PN) a) Chứng minh: Tam giác BPH đồng dạng tam giác CNT b) Chứng minh: QM là tia phân giác góc BQC c) Gọi G là điểm chính giữa cung BAC của đường tròn (O). GM cắt (O) tại E. Chứng minh: A, Q, E thẳng hàng. + Cho a, b, c là các số thực khác 0 thỏa mãn: a b c. Chứng minh a, b, c đôi một khác nhau thì a2b2c2 = 1.
Đề thi học sinh giỏi Toán 9 năm 2021 - 2022 phòng GDĐT Vũng Tàu - BR VT
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp thành phố môn Toán 9 năm học 2021 – 2022 phòng Giáo dục và Đào tạo UBND thành phố Vũng Tàu, tỉnh Bà Rịa – Vũng Tàu.