Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề HSG lớp 10 môn Toán năm 2020 2021 cụm THPT huyện Yên Dũng Bắc Giang

Nội dung Đề HSG lớp 10 môn Toán năm 2020 2021 cụm THPT huyện Yên Dũng Bắc Giang Bản PDF Bạn có thể thay đổi nội dung trên một cách như sau:

"Đề thi HSG Toán lớp 10 năm 2020-2021 tại cụm trường THPT huyện Yên Dũng, Bắc Giang đã diễn ra vào ngày 28 tháng 01 năm 2021. Đề thi này bao gồm hai mã đề, mã đề 101 và mã đề 102, được thiết kế với hình thức trắc nghiệm và tự luận. Phần trắc nghiệm có 40 câu, chiếm 14 điểm và phần tự luận có 3 câu, chiếm 6 điểm. Thời gian làm bài là 120 phút.

Trong đề thi, học sinh được đặt trước những bài toán thú vị và bổ ích. Ví dụ, trong một bài toán, một doanh nghiệp tư nhân đang tính toán phương án giảm giá bán xe để tăng lượng tiêu thụ. Học sinh được yêu cầu tìm ra giá bán mới để đạt được lợi nhuận cao nhất. Trong bài toán khác, học sinh cần xác định thời gian mà một quả bóng rơi xuống từ độ cao nhất định sau khi được đá lên.

Ngoài ra, đề thi còn đưa ra các bài toán về tổ hợp và xác suất, đòi hỏi học sinh phải áp dụng kiến thức đã học vào việc giải quyết vấn đề thực tế. Với sự phong phú và đa dạng của nội dung, đề thi HSG Toán lớp 10 mang lại cơ hội cho học sinh thể hiện kiến thức và khả năng tư duy logic của mình.

Đề thi HSG Toán lớp 10 năm 2020-2021 cụm THPT huyện Yên Dũng, Bắc Giang là cơ hội để các học sinh thể hiện khả năng và kiến thức của mình trong môn học quan trọng này. Đây cũng là dịp để thử thách bản thân và rèn luyện kỹ năng giải quyết vấn đề cho các học sinh. Mong rằng đề thi sẽ mang lại những trải nghiệm thú vị và bổ ích cho tất cả các thí sinh tham gia."

Nguồn: sytu.vn

Đọc Sách

Đề học sinh giỏi Toán 10 cấp trường năm 2019 - 2020 trường Lưu Hoàng - Hà Nội
Đề học sinh giỏi Toán 10 cấp trường năm học 2019 – 2020 trường THPT Lưu Hoàng – Hà Nội có đáp án và lời giải chi tiết. Trích dẫn đề học sinh giỏi Toán 10 cấp trường năm 2019 – 2020 trường Lưu Hoàng – Hà Nội : + Một chủ hộ kinh doanh có 32 phòng trọ cho thuê. Biết giá cho thuê mỗi tháng là 2.000.000đ/1 phòng trọ, thì không có phòng trống. Nếu cứ tăng giá mỗi phòng trọ lên 200.000đ/1 tháng, thì sẽ có 2 phòng bị bỏ trống. Hỏi chủ hộ kinh doanh sẽ cho thuê với giá là bao nhiêu để có thu nhập mỗi tháng cao nhất? + Cho hàm số y = -x2 + 2(m + 1)x + 1 – m2 (m là tham số). a) Tìm giá trị của m để đồ thị hàm số (1) cắt trục hoành tại hai điểm phân biệt A, B sao cho tam giác KAB vuông tại K, trong đó K(2; -2). b) Tìm giá trị của m để hàm số (1) có giá trị lớn nhất bằng 6. + Trong mặt phẳng tọa độ Oxy, cho hai điểm A(1; 2) và B(4; 3). Tìm tọa độ điểm M nằm trên trục hoành sao cho góc AMB bằng 45 độ.
Đề Olympic Toán 10 năm 2019 cụm trường THPT Hà Đông - Hoài Đức - Hà Nội
giới thiệu đến bạn đọc đề thi Olympic Toán 10 năm học 2018 – 2019 cụm trường THPT Hà Đông – Hoài Đức – Hà Nội, đề gồm 01 trang với 04 bài toán dạng tự luận, thang điểm bài thi là 20 điểm, học sinh có 150 phút để làm bài. Trích dẫn đề Olympic Toán 10 năm 2019 cụm trường THPT Hà Đông – Hoài Đức – Hà Nội : + Cho tam giác ABC có BC = a, CA = b, AB = c, độ dài ba đường cao kẻ từ đỉnh A, B, C lần lượt là ha, hb, hc. Biết rằng asinA + bsinB + csinC = ha + hb + hc, chứng minh tam giác ABC đều. [ads] + Cho hai tia Ax, By với AB = 100 (cm), góc xAB = 45° và By ⊥ AB. Chất điểm X chuyển động trên tia Ax bắt đầu từ A với vận tốc 3√2 (cm/s), cùng lúc đó chất điểm Y chuyển động trên tia By bắt đầu từ B với vận tốc 4 (cm/s). Sau t (giây) chất điểm X di chuyển đuợc đoạn đường AM, chất điểm Y di chuyển được đoạn đường BN. Tìm giá trị nhỏ nhất của đoạn MN. + Cho phương trình x^4 – 2(m + 2)x^2 + 2m + 3 = 0 (m là tham số). Tìm tất cả các giá trị của tham số m để phương trình có 4 nghiệm phân biệt x1, x2, x3, x4 thỏa mãn x1^2 + x2^2 + x3^2 + x4^2 + = 52.
Đề học sinh giỏi Toán 10 cấp trường năm 2018 - 2019 trường Lưu Hoàng - Hà Nội
Đề học sinh giỏi Toán 10 cấp trường năm học 2018 – 2019 trường THPT Lưu Hoàng – Hà Nội có đáp án và lời giải chi tiết. Trích dẫn đề học sinh giỏi Toán 10 cấp trường năm 2018 – 2019 trường Lưu Hoàng – Hà Nội : + Một nông trại dự định trồng cà rốt và khoai tây trên khu đất có diện tích 5 ha. Để chăm bón các loại cây này, nông trại phải dùng phân vi sinh. Nếu trồng cà rốt trên 1 ha cần dùng 3 tấn phân vi sinh và thu được 50 triệu đồng tiền lãi. Nếu trồng khoai tây trên 1 ha cần dùng 5 tấn phân vi sinh và thu được 75 triệu đồng tiền lãi. Hỏi nông trại cần trồng mỗi loại cây trên diện tích là bao nhiêu để thu được tổng số tiền lãi cao nhất? Biết rằng số phân vi sinh cần dùng không được vượt quá 18 tấn. + Cho tam giác ABC có độ dài các cạnh là a, b, c. Tìm b, c biết mb = 4, mc = 2 và a = 3 (trong đó mb, mc là độ dài các đường trung tuyến qua đỉnh B, C của tam giác). + Trong mặt phẳng tọa độ Oxy. Cho tam giác ABC, biết A(5; 4), B(3; -2), C(1; -5). Tìm tọa độ điểm M trên trục hoành sao cho |MA + MB + MC| đạt giá trị nhỏ nhất.
Đề Olympic Toán 10 năm 2019 cụm THPT Thanh Xuân Cầu Giấy Thường Tín - Hà Nội
Đề Olympic Toán 10 năm 2019 cụm THPT Thanh Xuân & Cầu Giấy & Thường Tín – Hà Nội nhằm giao lưu đội tuyển học sinh giỏi môn Toán khối 10 của ba trường: trường THPT Thanh Xuân (Hà Nội), trường THPT Cầu Giấy (Hà Nội), trường THPT Thường Tín (Hà Nội), đề thi được biên soạn theo dạng tự luận với 05 bài toán, học sinh làm bài trong 120 phút (không kể thời gian giám thị coi thi phát đề), lời giải chi tiết của đề thi được biên soạn bởi tập thể quý thầy, cô giáo nhóm Diễn Đàn Giáo Viên Toán. Trích dẫn đề Olympic Toán 10 năm 2019 cụm THPT Thanh Xuân & Cầu Giấy & Thường Tín – Hà Nội : + Trong mặt phẳng tọa độ Oxy cho hình chữ nhật ABCD. Gọi H là hình chiếu của A lên BD; I là trung điểm của BH. Biết đỉnh A(2;1), phương trình đường chéo BD là: x + 5y – 19 = 0, điểm I(42/13;41/13). a) Viết phương trình tham số đường thẳng AH. Tìm tọa độ điểm H? b) Viết phương trình tổng quát cạnh AD. [ads] + Cho tam giác ABC, đặt a = BC, b = AC, c = AB. Gọi M là điểm tùy ý. a) Tìm giá trị nhỏ nhất của biểu thức P = MA^2 + MB^2 + MC^2 theo a, b, c. b) Giả sử a = √6 cm, b = 2 cm, c = (1 + √3) cm. Tính số đo góc nhỏ nhất của tam giác ABC và diện tích tam giác ABC. + Cho hàm số y = x^2 – 2x + 2. a) Lập bảng biến thiên và vẽ đồ thị (P) của hàm số. b) Tìm m để phương trình -x^2 + 2x – 2 – m = 0 có hai nghiệm x1 và x2 thỏa mãn: x1 < -1 < 3 < x2.