Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi Toán 11 lần 3 năm 2018 - 2019 trường Thạch Thành 1 - Thanh Hóa

Đề thi Toán 11 lần 3 năm 2018 – 2019 trường Thạch Thành 1 – Thanh Hóa có mã đề 132 gồm 05 trang với 50 câu hỏi và bài toán dạng trắc nghiệm, thời gian học sinh làm bài là 90 phút, kỳ thi nhằm đánh giá chất lượng môn Toán đối với học sinh khối 11 trong giai đoạn giữa học kỳ 2 năm học 2018 – 2019, đề thi có đáp án mã đề 132, 209. Trích dẫn đề thi Toán 11 lần 3 năm 2018 – 2019 trường Thạch Thành 1 – Thanh Hóa : + Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi M, N, K lần lượt là trung điểm của CD, CB, SA. Giao tuyến của (MNK) với (SAB) là đường thẳng KT, với T được xác định theo một trong bốn phương án được liệt kê dưới đây. Hãy chọn khẳng định đúng: A. T là giao điểm của KN và SB. B. T là giao điểm của MN với SB. C. T là giao điểm của MN và AB. D. T là giao điểm của KN và AB. [ads] + Cho hàm số f(x) xác định trên đoạn [a;b]. Trong các mệnh đề sau, mệnh đề nào đúng? A. Nếu hàm số f(x) liên tục trên đoạn [a;b] và f(a)f(b) > 0 thì phương trình f(x) = 0 không có nghiệm trên khoảng (a;b). B. Nếu f(a)f(b) < 0 thì phương trình f(x) = 0 có ít nhất một nghiệm trên khoảng (a;b). C. Nếu hàm số f(x) liên tục, tăng trên đoạn [a;b] và f(a)f(b) > 0 thì phương trình f(x) = 0 không thể có nghiệm trên khoảng (a;b). D. Nếu phương trình f(x) = 0 có nghiệm trong khoảng (a;b) thì hàm số f(x) phải liên tục trên khoảng (a;b). + Trên giá sách có 20 cuốn sách; trong đó 2 cuốn sách cùng thể loại, 18 cuốn sách khác thể loại. Hỏi có bao nhiêu cách sắp xếp sao cho các cuốn sách cùng thể loại xếp kề nhau?

Nguồn: toanmath.com

Đọc Sách

Đề KSCL Toán 11 lần 1 năm 2019 2020 trường THPT Đồng Đậu Vĩnh Phúc
Ngày … tháng 11 năm 2019, trường THPT Đồng Đậu, tỉnh Vĩnh Phúc tổ chức kỳ thi khảo sát chất lượng môn Toán 11 lần thứ nhất giai đoạn giữa học kỳ 1 năm học 2019 – 2020. Đề KSCL Toán 11 lần 1 năm 2019 – 2020 trường THPT Đồng Đậu – Vĩnh Phúc mã đề 111, đề được biên soạn theo dạng đề tự luận với 11 bài toán, thời gian làm bài 90 phút, đề thi có lời giải chi tiết. Trích dẫn đề KSCL Toán 11 lần 1 năm 2019 – 2020 trường THPT Đồng Đậu – Vĩnh Phúc : + Đề thi khảo sát môn Toán của học sinh khối 11 trường THPT Đồng Đậu – Vĩnh Phúc gồm hai phần đề tự luận và trắc nghiệm. Mỗi học sinh dự thi phải thực hiện giải 2 phần đề gồm một phần tự luận và một phần trắc nghiệm. Trong đó tự luận có 12 đề, trắc nghiệm có 15 đề. Hỏi mỗi học sinh có bao nhiêu cách chọn đề thi gồm tự luận và trắc nghiệm? [ads] + Trong một cuộc thi pha chế, mỗi đội chơi được sử dụng tối đa 24g hương liệu, 9 lít nước và 210g đường để pha chế nước cam và nước táo. Để pha chế 1 lít nước cam cần 30 gam đường, 1 lít nước và 1 gam hương liệu; pha chế 1 lít nước táo cần 10 gam đường, 1 lít nước và 4 gam hương liệu. Mỗi lít nước cam nhận được 60 điểm thưởng. Mỗi lít nước táo được 80 điểm thưởng. Hỏi cần pha chế bao nhiêu lít nước trái cây mỗi loại để được số điểm thưởng là lớn nhất? + Trong mặt phẳng Oxy, cho điểm N (-2;3). Tìm ảnh của điểm N khi thực hiện liên tiếp phép tịnh tiến theo vectơ v(1;-1) và phép vị tự tâm I tỉ số 2 với I(1;2).
Đề KSCL Toán 11 lần 1 năm 2019 2020 trường Nguyễn Viết Xuân Vĩnh Phúc
Sáng thứ Tư ngày 30 tháng 10 năm 2019, trường THPT Nguyễn Viết Xuân, huyện Vĩnh Tường, tỉnh Vĩnh Phúc tổ chức kỳ thi khảo sát chất lượng môn Toán 11 lần thứ nhất, kỳ thi được diễn ra trong giai đoạn giữa học kỳ 1 năm học 2019 – 2020. Đề KSCL Toán 11 lần 1 năm 2019 – 2020 trường THPT Nguyễn Viết Xuân – Vĩnh Phúc có mã đề 001, đề thi gồm 06 trang với 50 câu trắc nghiệm, thời gian làm bài 90 phút, để hoàn thành tốt bài thi, ngoài việc nắm chắc các kiến thức Toán 11 đã học, học sinh cần phải ôn lại một số chủ đề Toán 10 trọng tâm, đề thi có đáp án. Trích dẫn đề KSCL Toán 11 lần 1 năm 2019 – 2020 trường Nguyễn Viết Xuân – Vĩnh Phúc : + Cho phương trình sinxcosx – sinx – cosx + m = 0 trong đó m là tham số thực. Để phương trình có nghiệm, các giá trị thích hợp của m là? + Cho 3 điểm di động A(1 – 2m;4m), B(2m;1 – m), C(3m – 1;0) với m là tham số. Biết khi m thay đổi thì trọng tâm tam giác ABC chạy trên một đường thẳng cố định, phương trình đường thẳng đó là? [ads] + Cho tam giác ABC; A’, B’, C’ lần lượt là trung điểm BC, AC, AB. Gọi O, G, H lần lượt là tâm đường tròn ngoại tiếp, trọng tâm, trực tâm tam giác ABC. Lúc đó phép biến hình biến tam giác ABC thành tam giác A’B’C’ là? + Cho hình chữ nhật ABCD biết A(1;2) và hai cạnh nằm trên hai đường thẳng có phương trình: 4x – 3y + 12 = 0 và 3x + 4y + 4 = 0. Diện tích hình chữ nhật ABCD bằng? + Cho hàm số y = x – |x|. Trên đồ thị của hàm số lấy hai điểm A và B có hoành độ lần lượt là – 2 và 1. Phương trình đường thẳng AB là?
Đề KSCL lần 1 Toán 11 năm 2019 - 2020 trường THPT Lý Nhân Tông - Bắc Ninh
Nhằm mục đích kiểm tra đánh giá chất lượng học tập môn Toán của học sinh khối 11 trong giai đoạn giữa học kì 1 năm học 2019 – 2020, ngày …/10/2019, trường Trung học Phổ thông Lý Nhân Tông, tỉnh Bắc Ninh tổ chức kì thi khảo sát chất lượng môn Toán 11 năm học 2019 – 2020 lần thứ nhất. Đề KSCL lần 1 Toán 11 năm 2019 – 2020 trường THPT Lý Nhân Tông – Bắc Ninh mã đề 281, đề gồm 04 trang với 40 câu trắc nghiệm, thời gian làm bài 60 phút, đề thi có đáp án. Trích dẫn đề KSCL lần 1 Toán 11 năm 2019 – 2020 trường THPT Lý Nhân Tông – Bắc Ninh : + Làng Duyên Yên, xã Ngọc Thanh, huyện Kim Động, tỉnh Hưng Yên nổi tiếng với trò chơi dân gian đánh đu. Trong trò chơi này, khi người chơi nhún đều thì cây đu sẽ đưa người chơi dao động qua lại ở vị trí cân bằng. Nghiên cứu trò chơi này, người ta thấy rằng khoảng cách h (tính bằng mét) từ người chơi đu đến vị trí cân bằng được biểu diễn qua thời gian t (t ≥ 0 và được tính bằng giây) bởi hệ thức h = |d| với d = 3cos[pi/3(2t – 1)], trong đó quy ước rằng d > 0 khi vị trí cân bằng ở phía sau lưng người chơi đu và d < 0 trong trường hợp trái lại. Tìm thời điểm đầu tiên sau 10 giây mà người chơi đu ở xa vị trí cân bằng nhất. [ads] + Cho hai đường thẳng cắt nhau d và d’. Có bao nhiêu phép vị tự biến d thành d’? A. Không có phép nào. B. Có một phép duy nhất. C. Chỉ có hai phép vị tự. D. Có vô số phép vị tự. + Cho đường tròn (C): x^2 + y^2 = 25. Tìm tất cả các giá trị m để trên đường thẳng: 3x – 4y + m = 0 có đúng một điểm I sao cho phép vị tự tâm I tỉ số k = -2 biến đường tròn (C) thành đường tròn (T) mà (C) và (T) tiếp xúc ngoài nhau.
Đề KSCL đầu năm Toán 11 năm 2019 - 2020 trường Yên Phong 2 - Bắc Ninh
giới thiệu đến quý thầy, cô giáo cùng các em học sinh đề thi khảo sát chất lượng đầu năm học môn Toán lớp 11 năm học 2019 – 2020 trường THPT Yên Phong số 2, tỉnh Bắc Ninh, kỳ thi nhằm kiểm tra lại các kiến thức Toán 10 mà học sinh đã được học, nhằm tạo tiền đề trước khi các em bắt đầu tìm hiểu những nội dung kiến thức mới trong chương trình môn Toán 11. Đề KSCL đầu năm Toán 11 năm 2019 – 2020 trường Yên Phong 2 – Bắc Ninh được biên soạn theo dạng đề tự luận, đề thi gồm có 1 trang với 5 bài toán, các bài toán đều nằm trong chương trình Toán lớp 10, yêu cầu học sinh cần ôn tập lại các kiến thức Toán 10 sau kỳ nghỉ hè kèo dài, đề thi có lời giải chi tiết. [ads] Trích dẫn đề KSCL đầu năm Toán 11 năm 2019 – 2020 trường Yên Phong 2 – Bắc Ninh : + Trong mặt phẳng với hệ tọa độ Oxy cho tam giác ABC có A(1; 2), B(0; 4), C(−3; 0). 1) Tìm tọa độ trung điểm D của đoạn thẳng AC. 2) Viết phương trình đường thẳng BD. 3) Viết phương trình đường tròn tâm A và tiếp xúc với BD. + Cho hàm số bậc hai y =− x^2 + 2x có đồ thị (P) và hàm số bậc nhất y = x − 2m + 1 (với m là tham số) có đồ thị (d). 1) Vẽ parabol (P). 2) Tìm m để (d) cắt (P) tại hai điểm phân biệt M, N sao cho MN = 8. + Cho các số thực a, b, c ∈ [1; 5] và thỏa mãn a + b + c = 9. Tìm giá trị nhỏ nhất của biểu thức P = ab + bc + ca.