Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi sát hạch Toán 11 lần 1 năm 2019 - 2020 trường Đoàn Thượng - Hải Dương

Với mục đích kiểm tra đánh giá chất lượng đầu năm học 2019 – 2020, để theo dõi từng giai đoạn học tập của học sinh, vừa qua, trường THPT Đoàn Thượng, tỉnh Hải Dương tổ chức kỳ thi sát hạch môn Toán lần thứ nhất đối với học sinh khối 11 của nhà trường. Đề thi sát hạch Toán 11 lần 1 năm học 2019 – 2020 trường THPT Đoàn Thượng – Hải Dương với mã đề 132, đề gồm 02 trang được biên soạn theo dạng đề trắc nghiệm khách quan kết hợp với tự luận, phần trắc nghiệm gồm 15 câu, chiếm 4,5 điểm, phần tự luận gồm 04 câu, chiếm 5,5 điểm, thời gian học sinh làm bài là 90 phút, nội dung đề tập trung chủ yếu vào các chủ đề Toán 11 mà học sinh vừa được học, cùng với một số bài toán trong chương trình Toán 10, phần trắc nghiệm có đáp án. [ads] Trích dẫn đề thi sát hạch Toán 11 lần 1 năm 2019 – 2020 trường Đoàn Thượng – Hải Dương : + Đội văn nghệ của trường THPT Đoàn Thượng, tỉnh Hải Dương có 5 nam và 7 nữ. Để chuẩn bị cho lễ khai giảng năm học 2019 – 2020 đoàn trường cần chọn 5 bạn để tham gia biểu diễn. Tính xác suất để 5 bạn được chọn: a) Có 2 bạn nam và 3 bạn nữ. b) Có ít nhất 1 bạn nữ. + Một người làm vườn có 12 cây giống gồm 6 cây xoài, 4 cây mít và 2 cây ổi. Người đó muốn chọn ra 6 cây giống để trồng. Tính xác suất để 6 cây được chọn, mỗi loại có đúng 2 cây. + Giải bóng đá V-LEAGUE 2019 có tất cả 14 đội bóng tham gia, các đội bóng thi đấu vòng tròn 2 lượt. Hỏi giải đấu có tất cả bao nhiêu trận đấu?

Nguồn: toanmath.com

Đọc Sách

Đề thi định kỳ lớp 11 môn Toán năm 2018 2019 trường THPT chuyên Bắc Ninh lần 2
Nội dung Đề thi định kỳ lớp 11 môn Toán năm 2018 2019 trường THPT chuyên Bắc Ninh lần 2 Bản PDF Đề thi định kỳ Toán lớp 11 năm 2018 – 2019 trường THPT chuyên Bắc Ninh lần 2 mã đề 106 được biên soạn để đánh giá chất lượng giữa học kỳ 1, đây là đợt kiểm tra thứ 2 sau kỳ khảo sát chất lượng đầu năm học, đề gồm 5 trang với 50 câu hỏi trắc nghiệm khách quan, yêu cầu học sinh hoàn thành trong thời gian 90 phút, ngoài các câu hỏi thuộc các chủ đề
Đề thi chất lượng lớp 11 môn Toán năm 2018 2019 trường Đào Duy Từ Hà Nội lần 2
Nội dung Đề thi chất lượng lớp 11 môn Toán năm 2018 2019 trường Đào Duy Từ Hà Nội lần 2 Bản PDF Đề thi chất lượng Toán lớp 11 năm 2018 – 2019 trường Đào Duy Từ – Hà Nội lần 2 mã đề 357 là bài thi kiểm tra giữa học kỳ 1, đề gồm 5 trang với 50 câu hỏi và bài toán trắc nghiệm khách quan, học sinh có 90 phút để làm bài thi. Trích dẫn đề thi chất lượng Toán lớp 11 năm 2018 – 2019 trường Đào Duy Từ – Hà Nội lần 2 : + Cho hình chóp S.ABCD có đáy ABCD là hình thang, đáy lớn là AB. Kết luận nào sau đây sai? A. Giao tuyến của hai mặt phẳng (SAD) và (SBC) là đường thẳng đi qua S và không song song với AD. B. Giao tuyến của hai mặt phẳng (SAD) và (SCB) là đường thẳng đi qua S và song song với AD. C. Giao tuyến của hai mặt phẳng (SAB) và (SCD) là đường thẳng đi qua S và song song với CD. D. Giao tuyến của hai mặt phẳng (SAC) và (SBD) là đường thẳng đi qua S và giao điểm của AC và BD. [ads] +  Cho hình chóp tứ giác S.ABCD, gọi O là giao điểm của AC và BD. Một mặt phẳng (a) cắt các cạnh bên SA, SB, SC, SD tương ứng tại các điểm M, N, P, Q. Khẳng định nào đúng? A. Các đường thẳng MQ, PQ, SO đồng quy. B. Các đường thẳng MP, NQ, SO đồng quy. C. Các đường thẳng MQ, PN, SO đồng quy. D. Các đường thẳng MN, PQ, SO đồng quy. + Tìm khẳng định đúng trong các khẳng định sau: A. Nếu hai mặt phẳng cùng song song với một mặt phẳng khác thì chúng song song với nhau. B. Nếu ba mặt phẳng phân biệt đối một cắt nhau theo ba giao tuyến thì ba giao tuyến đó đồng quy. C. Nếu đường thẳng a song song với mặt phẳng (P) thì a song song với một đường thẳng nào đó nằm trong (P). D. Cho hai đường thẳng a, b nằm trong mặt phẳng (P) và hai đường thẳng a’, b’ nằm trong mặt phẳng (Q). Khi đó, nếu a // a’, b // b’ thì (P) // (Q).
Đề thi khảo sát lớp 11 môn Toán năm 2018 2019 trường THPT Nguyễn Đăng Đạo Bắc Ninh
Nội dung Đề thi khảo sát lớp 11 môn Toán năm 2018 2019 trường THPT Nguyễn Đăng Đạo Bắc Ninh Bản PDF Đề thi khảo sát Toán lớp 11 năm 2018 – 2019 trường THPT Nguyễn Đăng Đạo – Bắc Ninh mã đề 110 được biên soạn theo hình thức trắc nghiệm khách quan 100% với 50 câu hỏi và bài toán, thời gian làm bài 90 phút, ngoài các câu hỏi Toán lớp 11 đã học thì đề còn có các câu hỏi thuộc nội dung chương trình Toán lớp 10 nhằm giúp học sinh củng cố lại các kiến thức cũ, đề thi có đáp án. Trích dẫn đề thi khảo sát Toán lớp 11 năm 2018 – 2019 trường THPT Nguyễn Đăng Đạo – Bắc Ninh : + Chọn mệnh đề sai: A. Phép quay góc quay 900 biến đường thẳng thành đường thẳng song song hoặc trùng với nó. B. Phép vị tự biến đường thẳng thành đường thẳng song song hoặc trùng với nó. C. Phép tịnh tiến biến đường tròn thành đường tròn có cùng bán kính. D. Phép quay góc quay 900 biến đường thẳng thành đường vuông góc với nó. [ads] + Trong mặt phẳng tọa độ Oxy, cho đường tròn (C): x^2 + y^2 = 4 và đường thẳng d: x + y – m = 0. Hỏi có bao nhiêu giá trị nguyên của m để trên d có đúng 2 điểm phân biệt mà từ mỗi điểm đó kẻ được 2 tiếp tuyến đến (C) và 2 tiếp tuyến này vuông góc với nhau? + Trong khai triển nhị thức (1 + x)^6 theo số mũ tăng dần của x, trong các khẳng định sau, những khẳng định nào đúng? I. Gồm có 7 số hạng. II. Số hạng thứ 2 là 6x. III. Hệ số của x5 là 5. A. Chỉ I và III đúng. B. Chỉ I và II đúng. C. Chỉ II và III đúng. D. Cả ba đúng. File WORD (dành cho quý thầy, cô):
Đề thi định kỳ lớp 11 môn Toán năm 2018 2019 trường THPT chuyên Bắc Ninh lần 1
Nội dung Đề thi định kỳ lớp 11 môn Toán năm 2018 2019 trường THPT chuyên Bắc Ninh lần 1 Bản PDF Đề thi định kỳ Toán lớp 11 năm 2018 – 2019 trường THPT chuyên Bắc Ninh lần 1 gồm 2 đề dành cho 2 ban: Chuyên Sinh, Văn, Anh, Cận 2 và Chuyên Lý, Hóa, Tin, Cận 1, mỗi đề được biên soạn theo hình thức tự luận với 6 – 7 bài toán, thời gian làm bài 120 phút (không kể thời gian giao đề). Đề nhằm kiểm tra lại các kiến thức Toán lớp 10 và các kiến thức Toán lớp 11 đã học như: Hàm số và phương trình lượng giác, Biện luận nghiệm phương trình bậc hai và định lý Vi-ét, Vectơ và ứng dụng, Giải phương trình vô tỉ, Tọa độ phẳng Oxy, Bài toán min – max. Đề thi định kỳ Toán lớp 10 có lời giải chi tiết. Trích dẫn đề thi định kỳ Toán lớp 11 năm 2018 – 2019 trường THPT chuyên Bắc Ninh lần 1 : + Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác nhọn ABC có trực tâm H. Đường trung tuyến AM và đường thẳng BC có phương trình lần lượt là: 3x + 5y – 8 = 0 và x – y – 4 = 0. Đường thẳng AH cắt đường tròn ngoại tiếp tam giác ABC tại điểm thứ hai là D(4; -2). Tìm tọa độ điểm B, biết B có hoành độ không lớn hơn 3. [ads] + Cho phương trình: x^2 – 4x + m + 1 = 0. Tìm giá trị của m để phương trình có hai nghiệm phân biệt dương thỏa mãn: √(x1) + √(x2) = 6. + Trong mặt phẳng tọa độ Oxy, cho hình thoi ABCD có các đỉnh B, D thuộc trục hoành, các đỉnh A, C lần lượt nằm trên hai đường thẳng d1: x – y + 1 = 0 và 3x + 2y – 5 = 0. a) Chứng minh hai điểm A và C đối xứng nhau qua trục hoành? Xác định tọa độ các đỉnh A và C. b) Biết diện tích hình thoi ABCD bằng 20. Xác định tọa độ các đỉnh B và D.