Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề HSG lớp 9 môn Toán năm 2022 2023 trường THPT chuyên Lam Sơn Thanh Hóa

Nội dung Đề HSG lớp 9 môn Toán năm 2022 2023 trường THPT chuyên Lam Sơn Thanh Hóa Bản PDF - Nội dung bài viết Đề Thi Học Sinh Giỏi Toán Lớp 9 Trường THPT Chuyên Lam Sơn Thanh Hóa Đề Thi Học Sinh Giỏi Toán Lớp 9 Trường THPT Chuyên Lam Sơn Thanh Hóa Xin chào quý thầy, cô và các em học sinh lớp 9! Hôm nay Sytu xin giới thiệu đến các bạn đề thi khảo sát chất lượng học sinh giỏi môn Toán lớp 9 năm học 2022 - 2023 của trường THPT chuyên Lam Sơn, tỉnh Thanh Hóa. Kỳ thi sẽ diễn ra vào Chủ Nhật ngày 27 tháng 11 năm 2022. Trích dẫn một số câu hỏi trong đề: 1. Hai số nguyên dương a, b được gọi là "cân bằng" nếu hai số này có cùng tập ước nguyên tố. Tìm tất cả các số nguyên dương n sao cho n và n + 6 là hai số "cân bằng" và n chia hết cho 4. 2. Cho đường tròn (O;R), đường kính AB cố định. Một điểm C di chuyển trên (O) (C khác A, B). Gọi I là tâm đường tròn nội tiếp tam giác ABC. Vẽ CH vuông góc với AB tại H. Hãy chứng minh một số tính chất của tam giác và đường tròn trong trường hợp này. 3. Một số câu hỏi khác liên quan đến vị trí của điểm C trên đường tròn, tìm điểm E trên AB để diện tích tam giác CEF lớn nhất, và chứng minh các mối quan hệ giữa các điểm và đường thẳng trong tam giác AHC. Hy vọng bài viết trên sẽ giúp các bạn ôn tập và chuẩn bị tốt cho kỳ thi sắp tới. Chúc các bạn học tốt và đạt kết quả cao trong kỳ thi sắp tới!

Nguồn: sytu.vn

Đọc Sách

Đề thi học sinh giỏi Toán 9 năm học 2018 - 2019 sở GDĐT Bắc Ninh
THCS. giới thiệu đến bạn đọc đề thi học sinh giỏi Toán 9 năm học 2018 – 2019 sở GD&ĐT Bắc Ninh, đề gồm 01 trang với 05 bài toán tự luận, thời gian làm bài 150 phút. Trích dẫn đề thi học sinh giỏi Toán 9 năm học 2018 – 2019 sở GD&ĐT Bắc Ninh : + Cho hàm số y = (m^2 – 4m – 4)x + 3m – 2 có đồ thị là d. Tìm tất cả các giá trị của m để đường thẳng d cắt trục hoành và trục tung lần lượt tại hai điểm A, B sao cho tam giác OAB có diện tích là 1 cm2 (O là gốc tọa độ, đơn vị đo trên các trục là cm). + Trong kì thi Olympic có 17 học sinh thi môn Toán được mang số báo danh là số tự nhiên trong khoảng từ 1 đến 1000. Chứng minh rằng có thể chọn ra 9 học sinh thi Toán có tổng các số báo danh được mang chia hết cho 9. [ads] + Cho tam giác ABC nội tiếp trong đường tròn (O) (AB < AC) và đường cao AD. Vẽ đường kính AE của đường tròn (O). a) Chứng minh rằng AD.AE = AB.AC. b) Vẽ dây AF của đường tròn (O) song song với BC, EF cắt AC tại Q, BF cắt AD tại P. Chứng minh rằng PQ song song với BC. c) Gọi K là giao điểm của AE và BC. Chứng minh rằng: AB.AC – AD.AK = √BD.BK.CD.CK.
Đề thi chọn học sinh giỏi Toán 9 cấp tỉnh năm 2018 - 2019 sở GDĐT Đồng Tháp
Đề thi chọn học sinh giỏi Toán 9 cấp tỉnh năm 2018 – 2019 sở GD&ĐT Đồng Tháp gồm 05 bài toán dạng tự luận, thời gian làm bài 150 phút, kỳ thi được tổ chức ngày 17/03/2019, đề thi có lời giải chi tiết và hướng dẫn chấm điểm.
Đề thi học sinh giỏi Toán 9 THCS năm 2018 - 2019 sở GDĐT Quảng Trị
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi học sinh giỏi Toán 9 THCS năm 2018 – 2019 sở GD&ĐT Quảng Trị.
Đề thi học sinh giỏi Toán 9 cấp tỉnh năm 2018 - 2019 sở GDĐT Gia Lai
Ngày 07 tháng 03 năm 2019, sở Giáo dục và Đào tạo Gia Lai tổ chức kỳ thi chọn học sinh giỏi cấp tỉnh môn Toán 9 năm học 2018 – 2019, các em đạt giải trong kỳ thi này sẽ là những tấm gương tiêu biểu trong học tập cho học sinh toàn tỉnh Gia Lai. Đề thi học sinh giỏi Toán 9 cấp tỉnh năm 2018 – 2019 sở GD&ĐT Gia Lai được biên soạn theo hình thức tự luận với 05 bài toán, học sinh làm bài trong khoảng thời gian 150 phút (không kể thời gian giám thị coi thi phát đề), đề thi có lời giải chi tiết. Trích dẫn đề thi học sinh giỏi Toán 9 cấp tỉnh năm 2018 – 2019 sở GD&ĐT Gia Lai : + Một đoàn học sinh đi tham quan quảng trường Đại Đoàn Kết tỉnh Gia Lai. Nếu mỗi ô tô chở 12 người thì thừa 1 người. Nếu bớt đi 1 ô tô thì số học sinh của đoàn được chia đều cho các ô tô còn lại. Hỏi có bao nhiêu học sinh đi tham quan và có bao nhiêu ô tô? Biết rằng mỗi ô tô chở không quá 16 người. [ads] + Trong kỳ thi chọn học sinh giỏi THCS cấp Tỉnh, đoàn học sinh huyện A có 17 học sinh dự thi. Mỗi thí sinh có số báo danh là một số tự nhiên trong khoảng từ 1 đến 907. Chứng minh rằng có thể chọn ra 9 học sinh trong đoàn có tổng các số báo danh chia hết cho 9. + Một cây nến hình lăng trụ đứng đáy lục giác đều có chiều cao và độ dài cạnh đáy lần lượt là 20cm và 1cm . Người ta xếp cây nến trên vào trong một cái hộp có dạng hình hộp chữ nhật sao cho cây nến nằm khít trong hộp. Tính thể tích cái hộp.