Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi KSCL Toán 12 lần 2 năm 2019 - 2020 trường THPT Tiên Du 1 - Bắc Ninh

Ngày … tháng 12 năm 2019, trường THPT Tiên Du số 1, tỉnh Bắc Ninh tổ chức kỳ thi khảo sát chất lượng môn Toán 12 lần thứ 2 năm học 2019 – 2020. Đề thi KSCL Toán 12 lần 2 năm 2019 – 2020 trường THPT Tiên Du 1 – Bắc Ninh mã đề 201 gồm có 06 trang với 50 câu trắc nghiệm, thời gian học sinh làm bài thi là 90 phút, kỳ thi nhằm mục đích giúp học sinh rèn luyện thường xuyên để hướng đến kỳ thi THPT Quốc gia 2020 môn Toán, đề thi có đáp án. Trích dẫn đề thi KSCL Toán 12 lần 2 năm 2019 – 2020 trường THPT Tiên Du 1 – Bắc Ninh : + Một ngôi biệt thự có 10 cây cột nhà hình trụ tròn, tất cả đều có chiều cao bằng 4,2m. Trong đó, 4 cây cột trước đại sảnh có đường kính bằng 40cm, 6 cây cột còn lại bên thân nhà có đường kính bằng 26cm. Chủ nhà dùng loại sơn giả đá để sơn 10 cây cột đó. Nếu giá của một loại sơn giả đá là 2.380.000 đồng/m2 (kể cả phần thi công) thì số tiền ít nhất người chủ phải chi để sơn 10 cây cột nhà đó gần nhất với giá trị nào? + Cho hình chóp S.ABC có SA, SB, SC đôi một vuông góc và SB + SC = SA = 3a. Gọi Sc(I;R) là mặt cầu tâm I, bán kính R tiếp xúc với tất cả các mặt của hình chóp S.ABC và nằm ngoài hình chóp S.ABC đồng thời I và S nằm về 2 phía đối với mặt phẳng (ABC) (nói cách khác Sc(I;R) là mặt cầu bàng tiếp mặt đáy (ABC) của hình chóp S.ABC). Tính bán kính R theo a. [ads] + Một người vay ngân hàng 90.000.000 đồng theo hình thức trả góp trong 3 năm, mỗi tháng người đó phải trả số tiền gốc là như nhau và tiền lãi. Giả sử lãi suất không thay đổi trong toàn bộ quá trình trả nợ là 0.8% trên tháng. Tổng số tiền mà người đó phải trả cho ngân hàng trong toàn bộ quá trình trả nợ là? A. 103.220.000 đồng. B. 103.320.000 đồng. C. 103.120.000 đồng. D. 103.420.000 đồng. + Khai triển P(x) = (x + 2)^2020 theo công thức nhị thức Niu tơn rồi lấy ngẫu nhiên hai số hạng trong các số hạng khai triển được. Gọi P là xác suất để lấy được hai số đều không chứa x^k khi k là số tự nhiên lẻ. Làm tròn P theo qui tắc làm tròn số để được một số thập phân có dạng a,bcde. Tính T = a + b + c + d + e? + Trong các khẳng định sau khẳng định nào sai? A. Nếu một đường thẳng song song với một trong hai mặt phẳng song song thì nó song song với mặt phẳng còn lại. B. Nếu một đường thẳng cắt một trong hai mặt phẳng song song thì nó cắt mặt phẳng còn lại. C. Nếu hai đường thẳng song song thì chúng cùng nằm trên một mặt phẳng. D. Nếu hai mặt phẳng phân biệt cùng song song với một mặt phẳng thì chúng song song với nhau.

Nguồn: toanmath.com

Đọc Sách

Đề thi thử Toán THPTQG 2018 trường THPT Cổ Loa - Hà Nội lần 2
Đề thi thử Toán THPTQG 2018 trường THPT Cổ Loa – Hà Nội lần 2 mã đề 001 gồm 6 trang với 50 câu hỏi trắc nghiệm khách quan, thời gian làm bài 90 phút, kỳ thi được diễn ra vào ngày 20 tháng 05 năm 2018. Trích dẫn đề thi thử Toán THPTQG 2018 : + Bạn A chơi game trên máy tính điện tử, máy có bốn phím di chuyển như hình vẽ bên. Mỗi lần nhấn phím di chuyển, nhân vật trong game sẽ di chuyển theo hướng mũi tên và độ dài các bước đi luôn bằng nhau. Tính xác suất để sau bốn lần nhấn phím di chuyển, nhân vật trong game trở về đúng vị trí ban đầu. [ads] + Một thợ thủ công muốn vẽ trang trí trên một hình vuông kích thước 4m x 4m bằng cách vẽ một hình vuông mới với các đỉnh là trung điểm các cạnh của hình vuông ban đầu, và tô kín màu lên hai tam giác đối diện (tham khảo hình vẽ). Quá trình vẽ và tô theo qui luật đó được lặp lại 5 lần. Tính số tiền nước sơn để người thợ thủ công đó hoàn thành trang trí hình vuông như trên. Biết tiền nước sơn để sơn 1m2 là 50.000 đ. + Cho đường tròn (C) tâm O, bán kính bằng 1, đường tròn (T) tâm I, bán kính bằng 2 lần lượt nằm trên hai mặt phẳng song song với nhau. Biết khoảng cách giữa hai mặt phẳng song song đó bằng độ dài đoạn thẳng OI = 3. Tính diện tích mặt cầu đi qua hai đường tròn (C) và (T).
Đề thi thử Toán THPTQG 2018 trường THPT Hậu Lộc 2 - Thanh Hóa lần 3
Đề thi thử Toán THPTQG 2018 trường THPT Hậu Lộc 2 – Thanh Hóa lần 3 mã đề 357 được biên soạn theo hình thức trắc nghiệm với 50 câu hỏi, thời gian làm bài 90 phút, thông qua các kỳ thi thử Toán học sinh sẽ làm quen với quy chế thi cử, nắm vững được dạng đề, dạng câu hỏi, rèn luyện tốc độ làm bài, kỹ năng giải toán … từ đó có sự chuẩn bị chu đáo cho kỳ thi THPT Quốc gia 2018 môn Toán, đề thi có đáp án . Trích dẫn đề thi thử Toán THPTQG 2018 : + Học sinh A thiết kế bảng điều khiển điện tử mở cửa phòng học của lớp mình. Bảng gồm 10 nút, mỗi nút được ghi một số tự nhiên từ 0 đến 9 và không có hai nút nào được ghi cùng một số. Để mở cửa cần nhấn 3 nút liên tiếp khác nhau sao cho 3 số trên 3 nút theo thứ tự đã nhấn tạo thành một dãy số tăng và có tổng bằng 10. Học sinh B chỉ nhớ được chi tiết 3 nút tạo thành dãy số tăng. Tính xác suất để B mở được cửa phòng học đó biết rằng nếu bấm sai 3 lần liên tiếp cửa sẽ tự động khóa lại( không cho mở nữa). [ads] + Cho ba số thực dương a, b, c theo thứ tự lập thành một cấp số nhân, đồng thời ba số lna, 2lnb, 3lnc theo thứ tự lập thành cấp số cộng. Khẳng định nào sau đây là đúng? A. Phương trình (b + 2017)^x + (c + 2016)^x = (a + 2018)^x có hai nghiệm. B. Phương trình (a + 2018)^x + (c + 2016)^x = (b + 2017)^x vô nghiệm. C. Phương trình 2016a^x – 4034b^x + 2018c^x = 0 có nghiệm duy nhất. D. Phương trình (a + 2018)^x + (b + 2017)^x = 2(c + 2016)^x vô nghiệm. + Để đảm bảo an toàn khi lưu thông trên đường, các xe ô tô khi dừng đèn đỏ phải cách nhau tối thiểu 1m. Một ô tô A đang chạy với vận tốc 12 m/s bỗng gặp ô tô B đang dừng đèn đỏ nên ô tô A hãm phanh và chuyển động chậm dần đều với vận tốc được biểu thị bởi công thức vA(t) = 12 – 4t (đơn vị tính bằng m/s), thời gian t tính bằng giây. Hỏi rằng để 2 ô tô A và B đạt khoảng cách an toàn khi dừng lại thì ô tô A phải hãm phanh khi cách ô tô B một khoảng ít nhất là bao nhiêu mét?
Đề thi thử Toán THPTQG 2018 trường THPT Bình Minh - Ninh Bình lần 3
Đề thi thử Toán THPTQG 2018 trường THPT Bình Minh – Ninh Bình lần 3 mã đề 001 được biên soạn theo hình thức trắc nghiệm khách quan, đề gồm 6 trang với 50 câu hỏi, thời gian làm bài 90 phút, đây là kỳ thi được tổ chức thường xuyên tại trường dành cho học sinh khối 12 trong giai đoạn chuẩn bị bước vào kỳ thi THPT Quốc gia 2018, đề thi có đáp án và lời giải chi tiết các bài toán vận dụng. Trích dẫn đề thi thử Toán THPTQG 2018 : + Trường THPT Bình Minh – Ninh Bình có 18 học sinh giỏi toàn diện, trong đó có 11 học sinh khối 12, 7 học sinh khối 11. Chọn ngẫu nhiên 6 học sinh từ 18 học sinh trên để đi dự trại hè. Xác suất để mỗi khối có ít nhất 1 học sinh được chọn là? [ads] + Cho hàm số y = f(x) có lim f(x) = 1 khi x → +∞ và lim f(x) = -1 khi x → -∞. Khẳng định nào sau đây là đúng? A. Đồ thị hàm số đã cho có 2 tiệm cận ngang là các đường thẳng có phương trình y = 1 và y = -1. B. Đồ thị hàm số đã cho có đúng một tiệm cận ngang. C. Đồ thị hàm số đã cho không có tiệm cận ngang. D. Đồ thị hàm số đã cho có 2 tiệm cận ngang là các đường thẳng có phương trình x = 1 và x = -1. + Trong không gian, cho hình chữ nhật ABCD có AB = 1 và AD = 2. Gọi M, N lần lượt là trung điểm của AD và BC. Quay hình chữ nhật đó xung quanh trục MN, ta được một hình trụ. Tính diện tích toàn phần Stp của hình trụ đó?
Đề thi thử Toán THPTQG 2018 trường THPT Bắc Yên Thành - Nghệ An lần 3
Đề thi thử Toán THPTQG 2018 trường THPT Bắc Yên Thành – Nghệ An lần 3 mã đề 357 được biên soạn nhằm giúp các sinh khối 12 được rèn luyện định kỳ để nâng cao năng lực môn Toán, chuẩn bị cho kỳ thi THPT Quốc gia 2018, đề gồm 6 trang với 50 câu hỏi trắc nghiệm khách quan, thí sinh làm bài trong thời gian 90 phút. Trích dẫn đề thi thử Toán THPTQG 2018 : + Trong không gian Oxyz, cho ba điểm A(-1;0;0), B(0;2;0), C(0;0;3). Gọi M là điểm thay đổi trên mặt phẳng (ABC) và N là điểm trên tia OM sao cho OM.ON = 12. Biết N luôn thuộc một mặt cầu cố định. Xác định tọa độ tâm mặt cầu đó. [ads] + Một người gửi 20 triệu đồng vào một ngân hàng với lãi suất 0,45%/tháng. Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi được nhập vào vốn ban đầu để tính lãi cho tháng tiếp theo. Hỏi sau bao lâu người đó được ít nhất 25 triệu đồng (cả vốn và lãi) từ số vốn ban đầu? (Giả sử lãi suất không thay đổi trong quá trình gửi). + Cho n là số nguyên dương; a, b là các số thực. Biết trong khai triển (a^2 + b)^n có số hạng chứa a^8b^8. Số hạng có số mũ của a gấp đôi số mũ của b là?