Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

5 chủ đề ôn thi tuyển sinh vào lớp 10 môn Toán - Lê Văn Hưng

Tài liệu gồm 182 trang được biên soạn bởi thầy giáo Lê Văn Hưng, tuyển tập 5 chủ đề ôn thi tuyển sinh vào lớp 10 môn Toán, tương ứng với 5 bài toán trong các đề tuyển sinh vào lớp 10 của sở Giáo dục và Đào tạo Hà Nội. Trong mỗi chủ đề, tài liệu tóm tắt lý thuyết trọng tâm học sinh cần nắm, hướng dẫn giải các dạng bài tập điển hình và chọn lọc các bài tập tự luyện từ các đề tuyển sinh vào lớp 10 môn Toán, có đáp số và hướng dẫn giải. Khái quát nội dung tài liệu 5 chủ đề ôn thi tuyển sinh vào lớp 10 môn Toán – Lê Văn Hưng: CHỦ ĐỀ I : RÚT GỌN BIỂU THỨC VÀ BÀI TOÁN PHỤ. + Dạng 1. Tính giá trị cuả biểu thức A khi x = x0. + Dạng 2. Tìm giá trị của biến khi biết giá trị của biểu thức. + Dạng 3. So sánh biểu thức A với k hoặc. + Dạng 4. Tìm giá trị nguyên để của x để biểu A có giá trị nguyên. + Dạng 5. Tìm giá trị của x để biểu A có giá trị nguyên. + Dạng 6. Tìm giá trị nhỏ nhất hoặc giá trị lớn nhất của biểu thức A. + Dạng 7. Chứng minh biểu thức A luôn luôn âm hoặc luôn luôn dương. + Dạng 8. Chứng minh biểu thức thỏa mãn với điều kiện nào đó. CHỦ ĐỀ II : HỆ PHƯƠNG TRÌNH. Phần I : Giải và biện luận hệ phương trình. + Dạng 1. Giải hệ phương trình cơ bản. + Dạng 2. Giải hệ phương trình không cơ bản. + Dạng 3. Giải hệ phương trình chứa tham tham số. Phần II : Giải bài toán bằng cách lập hệ phương trình. + Dạng 1. Tìm các chữ số tự nhiên. + Dạng 2. Tính tuổi. + Dạng 3. Hình học. + Dạng 4. Toán liên quan đến tỉ số phần trăm. + Dạng 5. Toán làm chung công việc. + Dạng 6. Bài toán liên quan đến sự thay đổi của tích. + Dạng 7. Toán chuyển động. [ads] CHỦ ĐỀ III : PHƯƠNG TRÌNH BẬC HAI – ĐƯỜNG THẲNG – PARABOL. + Dạng 1. Tính giá trị của hàm số y = f(x) = ax2 tại x = x0. + Dạng 2. Xác định tính đồng biến, nghịch biến của hàm số. + Dạng 3. Vẽ đồ thị hàm số y = f(x) = ax2 (a khác 0). + Dạng 4. Xác định tham số. + Dạng 5. Tìm tọa độ giao điểm của parabol và đường thẳng. + Dạng 6. Xác định hệ số a, b, c của phương trình bậc hai. + Dạng 7. Giải phương trình bậc hai. + Dạng 8. Giải và biện luận phương trình bậc hai. + Dạng 9. Giải hệ phương trình hai ẩn gồm một ẩn. + Dạng 10. Giải hệ phương trình có hai ẩn số. + Dạng 11. Hệ thức Vi-ét và ứng dụng. + Dạng 12. Giải và biện luận phương trình trùng phương. + Dạng 13. Giải một số phương trình, hệ phương trình. + Dạng 14. Giải bài toán bằng cách lập phương trình. + Dạng 15. Tìm hệ thức liên hệ giữa các nghiệm không phụ thuộc. + Dạng 16. Tìm điểm cố định của đường thẳng phụ thuộc tham số. + Dạng 17. Tìm tham số m sao cho khoảng cách từ gốc tọa độ đến. CHỦ ĐỀ IV : CÁC BÀI TOÁN LIÊN QUAN ĐẾN ĐƯỜNG TRÒN. + Dạng 1. Bài toán liên quan đến chứng minh. + Dạng 2. Bài toán liên quan đến tính toán. + Dạng 3. Bài toán liên quan đến quỹ tích. + Dạng 4. Bài toán liên quan đến dựng hình. + Dạng 5. Bài toán liên quan đến cực trị hình học. CHỦ ĐỀ V : BÀI TOÁN MIN – MAX, GIẢI PHƯƠNG TRÌNH CHỨA CĂN THỨC. Phần I . Bài toán Min – Max. + Dạng 1. Kĩ thuật chọn điểm rơi. + Dạng 2. Kĩ thuật khai thác giả thiết. + Dạng 3. Kĩ thuật Cô – si ngược dấu. Phần II . Giải phương trình chứa căn thức. + Dạng 1. Sử dụng biến đổi đại số. + Dạng 2. Đặt ẩn phụ. + Dạng 3. Đánh giá.

Nguồn: toanmath.com

Đọc Sách

Tài liệu luyện thi vào lớp 10 môn Toán phần Hình học - Vũ Xuân Hưng
Tài liệu gồm 122 trang, được biên soạn bởi thầy giáo Vũ Xuân Hưng, tổng hợp kiến thức cần nhớ, các dạng bài tập và hướng dẫn giải, tuyển chọn các bài tập từ cơ bản đến nâng cao các chủ đề Hình học bậc THCS, giúp học sinh ôn tập chuẩn bị cho kỳ thi tuyển sinh vào lớp 10 môn Toán. CHUYÊN ĐỀ 7 – HÌNH HỌC PHẲNG. A. KIẾN THỨC CẦN NHỚ 1. Hệ thức lượng trong tam giác vuông. 2. Các tỉ số lượng giác của góc nhọn trong tam giác vuông. 3. Góc và đường tròn. B. CÁC DẠNG BÀI TẬP CƠ BẢN Dạng toán 1. Chứng minh tứ giác nội tiếp đường tròn. Dạng toán 2. Chứng minh tứ giác đã cho là hình bình hành, hình thoi, hình chữ nhật, hình vuông. Dạng toán 3. Chứng minh đường thẳng là tiếp tuyến của đường tròn. Dạng toán 4. Chứng minh ba điểm thẳng hàng. Dạng toán 5. Chứng minh tỉ lệ độ dài đoạn thẳng. Dạng toán 6. Chứng minh đường thẳng là tiếp tuyến của đường tròn. TUYỂN TẬP ĐỀ THI TUYỂN SINH VÀO LỚP 10 MÔN TOÁN. Xem thêm : Tài liệu luyện thi vào lớp 10 môn Toán phần Đại số – Vũ Xuân Hưng
Các bài toán chứng minh ba điểm thẳng hàng - ba đường thẳng đồng quy
Tài liệu gồm 80 trang, được biên soạn bởi thầy giáo Nguyễn Công Lợi, hướng dẫn phương pháp và tuyển chọn các bài toán chứng minh ba điểm thẳng hàng – ba đường thẳng đồng quy, đây là dạng toán thường gặp trong các đề tuyển sinh vào lớp 10 môn Toán. A. CÁC BÀI TOÁN VỀ BA ĐIỂM THẲNG HÀNG I. Một số phương pháp chứng minh ba điểm thẳng hàng + Phương pháp 1: Sử dụng góc bù nhau: Nếu có 0 ABx xBC 180 thì 3 điểm A, B, C thẳng hàng theo thứ tự đó. + Phương pháp 2: Sử dụng tiên đề về đường thẳng song song: Tiên đề Ơclít: Qua một điểm ở ngoài một đường thẳng chỉ kẻ được duy nhất một đường thẳng song song với đường thẳng đã cho. Do đó, nếu qua điểm A ta kẻ được AB và AC cùng song song với một đường thẳng d nào đó thì A, B, C thẳng hàng. Để chứng minh ba điểm A, B, C thẳng hàng ta chứng minh AB và AC cùng song song với một đường thẳng d. + Phương pháp 3: Sử dụng tiên đề về đường thẳng vuông góc: Để chứng minh ba điểm A, B, C thẳng hàng ta đi chứng minh AB và AC cùng vuông góc với một đường thẳng d. + Phương pháp 4: Sử dụng 2 tia trùng nhau hoặc đối nhau: Nếu hai tia MA, MB trùng nhau hoặc đối nhau thì 3 điểm M, A, B thẳng hàng. + Phương pháp 5: Thêm điểm: Để chứng minh 3 điểm A, B, C thẳng hàng có thể xác định thêm điểm D khác A, B, C sau đó chứng minh hai trong ba bộ ba điểm A, B, D; A, C, D; B, C, D thẳng hàng. + Phương pháp 6: Phương pháp sử dụng hình duy nhất: Để chứng minh ba điểm A, B, C thẳng hàng với C thuộc hình H nào đó. Ta gọi C’ là giao điểm của AB với hình H và tìm cách chứng minh hai điểm C và C’ trùng nhau. + Phương pháp 7: Sử dụng định lý Menelaus: Cho tam giác ABC. Các điểm A’, B’, C’ lần lượt nằm trên các đường thẳng BC, CA, AB sao cho trong chúng hoặc không có điểm nào, hoặc có đúng 2 điểm thuộc các cạnh của tam giác ABC. Khi đó A’, B’, C’ thẳng hàng khi và chỉ khi. II. Một số ví dụ minh họa B. CÁC BÀI TOÁN VỀ BA ĐƯỜNG ĐỒNG QUY I. Một số phương pháp chứng minh ba đường đồng quy + Phương pháp 1: Chuyển bài toán chứng minh ba đường thẳng đồng quy về bài toán chứng minh ba điểm thẳng hàng. + Phương pháp 2: Chứng minh ba đường thẳng là đường trung tuyến, ba đường phân giác, ba đường cao, ba đường trung trực trong tam giác. + Phương pháp 3: Gọi giao điểm của hai đường thẳng là M và chứng minh đường thẳng còn lại cũng đi qua điểm M. + Phương pháp 4: Sử dụng định lí Ceva: Cho tam giác ABC. Các điểm A’, B’, C’ lần lượt thuộc các đường thẳng BC, CA, AB. Khi đó ba đường thẳng AA’, BB’, CC’ đồng quy khi và chỉ khi A B B C C A A C B A C B. II. Một số ví dụ minh họa
Tài liệu luyện thi vào lớp 10 môn Toán phần Đại số - Vũ Xuân Hưng
Tài liệu gồm 141 trang, được biên soạn bởi thầy giáo Vũ Xuân Hưng, tổng hợp kiến thức cần nhớ, các dạng bài tập và hướng dẫn giải, tuyển chọn các bài tập từ cơ bản đến nâng cao các chủ đề Đại số bậc THCS, giúp học sinh ôn tập chuẩn bị cho kỳ thi tuyển sinh vào lớp 10 môn Toán. CHUYÊN ĐỀ 1 – BIỂU THỨC CHỨA CĂN BẬC HAI. I – KIẾN THỨC CẦN NHỚ. 1. Định nghĩa căn bậc hai. 2. Các công thức vận dụng. 3. Định nghĩa căn bậc ba. 4. Tính chất của căn bậc ba. II – CÁC DẠNG BÀI TẬP CƠ BẢN. Dạng 1: Tìm điều kiện để biểu thức có nghĩa. Dạng 2: Căn bậc hai số học. Dạng 3: Tính giá trị của biểu thức. Dạng 4: Phân tích đa thức thành nhân tử. Dạng 5: Tìm x. Dạng 6: So sánh. Dạng 7: Rút gọn biểu thức và các bài tập liên quan đến rút gọn. III – BÀI TẬP TỰ LUYỆN. CHUYÊN ĐỀ 2 – HÀM SỐ BẬC NHẤT. I – KIẾN THỨC CẦN NHỚ. 1. Hàm số bậc nhất. 1.1 – Khái niệm hàm số bậc nhất. 1.2 – Tính chất. 1.3 – Đồ thị của hàm số y = ax + b (a khác 0). 1.4 – Cách vẽ đồ thị hàm số y = ax + b (a khác 0). 1.5 – Vị trí tương đối của hai đường thẳng. 1.6 – Hệ số góc của đường thẳng y = ax + b (a khác 0). II – CÁC DẠNG BÀI TẬP CƠ BẢN. Dạng 1: Xác định hàm số đã cho là hàm đồng biến – nghịch biến. Dạng 2: Vẽ đồ thị của hàm số bậc nhất và các bài toán liên quan. Dạng 3: Tìm m để hai đường thẳng cắt nhau, song song, trùng nhau. Dạng 4: Xác định hàm số bậc nhất. Dạng 5: Tìm m để khoảng cách từ gốc tọa độ đến đường thẳng lớn nhất, nhỏ nhất. Dạng 6: Xác định tham số m để đồ thị hàm số y = f(x;m) thỏa mãn một điều kiện cho trước. Dạng 7: Chứng minh 3 điểm thẳng hàng. Dạng 8: Tìm m để 3 đường thẳng đồng quy (cùng đi qua một điểm). III – BÀI TẬP TỰ LUYỆN. CHUYÊN ĐỀ 3 – HỆ PHƯƠNG TRÌNH BẬC NHẤT HAI ẨN SỐ. I – KIẾN THỨC CẦN NHỚ. 1. Giải hệ phương trình bằng phương pháp thế. 2. Giải hệ phương trình bằng phương pháp cộng đại số. II – CÁC DẠNG BÀI TẬP CƠ BẢN. Dạng 1: Giải hệ phương trình bằng phương pháp thế. Dạng 2: Giải hệ phương trình bằng phương pháp cộng đại số. Dạng 3: Giải hệ phương trình bằng phương pháp đặt ẩn phụ. Dạng 4: Xác định giá trị tham số m để hệ phương trình vô nghiệm. Dạng 5: Xác định giá trị tham số m để hệ phương trình đã cho có nghiệm duy nhất, tìm nghiệm duy nhất đó. Dạng 6: Tìm nghiệm x, y có chứa tham số m sau đó tìm GTLN hoặc GTNN của biểu thức cho trước. Dạng 7: Hệ phương trình chứa dấu giá trị tuyệt đối. III – BÀI TẬP TỰ LUYỆN. CHUYÊN ĐỀ 4 – HÀM SỐ Y = AX2 (A KHÁC 0). PHƯƠNG TRÌNH BẬC HAI MỘT ẨN. I. Hàm số y = ax2 (a khác 0). II. Phương trình bậc hai một ẩn. 1. Định nghĩa: Phương trình bậc hai một ẩn là phương trình có dạng. 2. Công thức nghiệm của phương trình bậc hai. 3. Công thức nghiệm thu gọn. 4. Hệ thức Vi-et và ứng dụng. III. Các dạng bài tập cơ bản. IV. Bài tập áp dụng. CHUYÊN ĐỀ 5 – GIẢI BÀI TOÁN BẰNG CÁCH LẬP PHƯƠNG TRÌNH – HỆ PHƯƠNG TRÌNH. I – KIẾN THỨC CẦN NHỚ. 1. Phương pháp chung. 2. Một số dạng toán thường gặp. II – BÀI TẬP MINH HỌA. Dạng 1: Bài toán hình học. Dạng 2: Bài toán tìm số. Dạng 3: Bài toán dân số, phần trăm. Dạng 4: Bài toán năng suất. Dạng 5: Bài toán chung – riêng. Dạng 6: Bài toán chuyển động. Dạng 7: Bài toán thực tế vận dụng. III – BÀI TẬP TỰ LUYỆN. CHUYÊN ĐỀ 6 – BẤT ĐẲNG THỨC – TÌM GIÁ TRỊ MIN – MAX CỦA BIỂU THỨC. I – KIẾN THỨC CẦN NHỚ. 1. Phương pháp chung. 2. Phương pháp riêng. 2.1. Sử dụng một số bất đẳng thức cổ điển thông dụng. 2.2. Bất đẳng thức Cauchy (Cosi). 2.3. Bất đẳng thức Bunhiacopski. 2.4. Bất đẳng thức Trê-B-Sép. II – BÀI TẬP MINH HỌA.
Các bài toán chứng minh cực trị hình học
Tài liệu gồm 50 trang, hướng dẫn phương pháp giải các bài toán chứng minh cực trị hình học, đây là dạng toán thường gặp trong các đề tuyển sinh vào lớp 10 môn Toán. A. Phương pháp giải bài toán cực trị hình học. 1. Dạng chung của bài toán cực trị hình học. 2. Hướng giải bài toán cực trị hình học. 3. Cách trình bày lời giải bài toán cực trị hình học. B. Các kiến thức thường dùng giải bài toán cực trị hình học. 1. Sử dụng quan hệ giữa đường vuông góc, đường xiên, hình chiếu. 2. Sử dụng quan hệ giữa đường thẳng và đường gấp khúc. 3. Sử dụng các bất đẳng thức trong đường tròn. 4. Sử dụng bất đẳng thức về lũy thừa bậc hai. 5. Sử dụng bất đẳng thức Cô-si. 6. Sử dụng tỉ số lượng giác. C. Một số bài toán ôn luyện có hướng dẫn. D. Bài tập tự luyện. E. Rèn luyện tổng hợp.