Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề HSG lớp 9 môn Toán vòng 3 năm 2022 2023 phòng GD ĐT Nghi Lộc Nghệ An

Nội dung Đề HSG lớp 9 môn Toán vòng 3 năm 2022 2023 phòng GD ĐT Nghi Lộc Nghệ An Bản PDF - Nội dung bài viết Thông báo đề thi HSG lớp 9 môn Toán vòng 3 năm 2022 2023 tại Nghi Lộc, Nghệ An Thông báo đề thi HSG lớp 9 môn Toán vòng 3 năm 2022 2023 tại Nghi Lộc, Nghệ An Sytu xin gửi đến quý thầy cô và các em học sinh lớp 9 đề thi chọn đội tuyển tham gia cuộc thi học sinh giỏi cấp tỉnh môn Toán lớp 9 vòng 3 năm học 2022-2023 tại phòng Giáo dục và Đào tạo huyện Nghi Lộc, tỉnh Nghệ An. Đây là cơ hội để các em thể hiện năng lực và kiến thức của mình trong môn Toán, cũng như trau dồi kỹ năng thi cử và tự tin trước những bài thi quan trọng. Đề thi được thiết kế với nhiều dạng bài tập, từ cơ bản đến nâng cao, đảm bảo phản ánh đầy đủ chương trình học của lớp 9, giúp các em rèn luyện kỹ năng giải quyết vấn đề, tư duy logic và sự linh hoạt trong suy nghĩ. Hy vọng các em sẽ cống hiến và đạt kết quả xuất sắc trong kỳ thi sắp tới. Chúc các em học sinh lớp 9 tại Nghi Lộc, Nghệ An sẽ có những bước chuẩn bị tốt nhất cho kỳ thi HSG môn Toán vòng 3 sắp tới. Hãy cố gắng, nỗ lực và tự tin để tỏa sáng trong cuộc thi và đạt được thành tích cao nhất!

Nguồn: sytu.vn

Đọc Sách

Đề chọn HSG Toán 9 năm 2022 - 2023 phòng GDĐT Quảng Trạch - Quảng Bình
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra định kỳ chọn học sinh giỏi môn Toán 9 năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Quảng Trạch, tỉnh Quảng Bình; kỳ thi được diễn ra vào ngày 11 tháng 11 năm 2022. Trích dẫn Đề chọn HSG Toán 9 năm 2022 – 2023 phòng GD&ĐT Quảng Trạch – Quảng Bình : + Cho tam giác ABC vuông tại A có đường cao AH (AB < AC và H thuộc BC). Trên tia HC lấy điểm D sao cho HA = HD. Qua D kẻ đường thẳng vuông góc với BC cắt AC tại E. a) Chứng minh rằng BEC và ADC đồng dạng, từ đó suy ra số đo góc AEB. b) Gọi M là trung điểm của BE. Tính số đo góc AHM. c) Tia AM cắt BC tại G. Chứng minh GB/BC = HD/(AH + HC). + Cho tam giác ABC nhọn (AB < AC) nội tiếp đường tròn (O), hai đường cao BE, CF cắt nhau tại H. Tia AO cắt đường tròn (O) tại D. a) Chứng minh các điểm B, C, E, F thuộc một đường tròn. b) Gọi M là trung điểm của BC, tia AM cắt HO tại G. Chứng minh G là trọng tâm của tam giác ABC. + Cho n là số nguyên dương. Chứng minh rằng nếu 2n + 1 và 3n + 1 là các số chính phương thì 5n + 3 không phải là số nguyên tố.
Đề học sinh giỏi huyện Toán 9 năm 2022 - 2023 phòng GDĐT Tây Hòa - Phú Yên
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp huyện môn Toán 9 năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Tây Hòa, tỉnh Phú Yên; kỳ thi được diễn ra vào ngày 08 tháng 11 năm 2022. Trích dẫn Đề học sinh giỏi huyện Toán 9 năm 2022 – 2023 phòng GD&ĐT Tây Hòa – Phú Yên : + Cho ba số tự nhiên a, b, c. Biết rằng 7a + 2b – 5c chia hết cho 11. Chứng minh rằng 3a – 7b + 12c cũng chia hết cho 11. + Cho hình vuông ABCD. M là một điểm tuỳ ý trên đường chéo BD. Kẻ ME vuông góc AB, MF vuông góc AD. a) Chứng minh: DE = CF và DE vuông góc CF; b) Chứng minh ba đường thẳng DE, BF và CM đồng quy; c) Xác định vị trí điểm M trên BD để diện tích tứ giác AEMF lớn nhất. + Gọi I là điểm nằm trong ABC, các đường thẳng AI, BI, CI lần lượt cắt BC, CA, AB tại M, N, P. Chứng minh rằng: AI/IM = AN/NC + AP/PB.
Đề học sinh giỏi huyện Toán 9 năm 2022 - 2023 phòng GDĐT Kỳ Anh - Hà Tĩnh
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp huyện môn Toán 9 năm học 2022 – 2023 phòng Giáo dục và Đào tạo UBND huyện Kỳ Anh, tỉnh Hà Tĩnh. Trích dẫn Đề học sinh giỏi huyện Toán 9 năm 2022 – 2023 phòng GD&ĐT Kỳ Anh – Hà Tĩnh : + Một cửa hàng nhập được một lô hàng để bán. Ngày thứ nhất bán được 8 sản phẩm và 1/8 số sản phẩm còn lại. Ngày thứ hai bán được 16 sản phẩm và 1/8 số sản phẩm còn lại. Ngày thứ ba bán được 24 sản phẩm và 1/8 số sản phẩm còn lại. Cứ như vậy cho đến ngày cuối cùng thì bán hết toàn bộ lô hàng đã nhập. Biết số sản phẩm bán được mỗi ngày đều bằng nhau. Hỏi sau bao nhiêu ngày thì bán hết lô hàng. + Tam giác ABC cân tại A, biết AB = 2cm và góc A bằng 36. Tính BC. + Cho hình chữ nhật ABCD có diện tích bằng 48cm2; trên BC và CD lần lượt lấy các điểm E và F. Biết SABE = 8cm2; SADF = 2cm2. Tính SAEF.
Đề chọn đội tuyển thi HSG tỉnh Toán 9 năm 2022 - 2023 phòng GDĐT Tân Kỳ - Nghệ An
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn đội tuyển dự thi học sinh giỏi cấp tỉnh môn Toán 9 năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Tân Kỳ, tỉnh Nghệ An; kỳ thi được diễn ra vào ngày 25 tháng 10 năm 2022. Trích dẫn Đề chọn đội tuyển thi HSG tỉnh Toán 9 năm 2022 – 2023 phòng GD&ĐT Tân Kỳ – Nghệ An : + Cho x, y là các số nguyên thỏa mãn 2×2 + x = 3y2 + y. Chứng minh x − y; 2x + 2y + 1 và 3x + 3y + 1 đều là các số chính phương. + Cho hình vuông ABCD. Điểm M thuộc cạnh AC, kẻ MH vuông góc với AB (H thuộc AB). Kẻ MK vuông góc với BC (K thuộc BC). O là trung điểm của AM. a) Chứng minh: HBO đồng dạng MCH b) Chứng minh: BO/CH c) Xác định vị trí của M trên AC để diện tích ADHK đạt giá trị nhỏ nhất. + Cho x; y là các số thực dương thỏa mãn (x + 1)(y + 1) = 4xy. Chứng minh rằng?