Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Các dạng toán và phương pháp giải Toán 8 Ngô Văn Thọ

Tài liệu gồm 202 trang phân dạng và hướng dẫn phương pháp giải Toán 8 toàn tập – Đại số và Hình học, tài liệu được biên soạn bởi thầy Ngô Văn Thọ. Trong mỗi chuyên đề (ứng với mỗi chương) đều được phân dạng chi tiết, nếu các bước giải toán, các vì dụ minh họa có giải chi tiết và phần bài tập áp dụng để học sinh tự luyện. Nội dung tài liệu : PHẦN A . ĐẠI SỐ 8 Chương I . Phép nhân và phép chia các đa thức 1. Nhân đơn thức với đa thức – nhân đa thức với đa thức 2. Hằng đẳng thức 3. Phân tích đa thức thành nhân tử + Vấn đề 1. Phương pháp đặt nhân tử chung + Vấn đề 2. Phương pháp nhóm nhiều hạng tử + Vấn đề 3. Phương pháp dùng hằng đẳng thức + Vấn đề 4. Một số phương pháp khác 4. Chia đa thức + Vấn đề 1. Chia đơn thức cho đơn thức + Vấn đề 2. Chia đa thức cho đơn thức + Vấn đề 3. Chia đa thức cho đa thức Chương II . Phân thức đại số 1. Phân thức đại số + Vấn đề 1. Tìm điều kiện để phân thức có nghĩa + Vấn đề 2. Dạng toán tìm giá trị của biến để phân thức nhận một giá trị nào đó + Vấn đề 3. Chứng minh một phân thức luôn có nghĩa 2. Tính chất cơ bản của phân thức đại số + Vấn đề 1. Phân thức bằng nhau + Vấn đề 2. Rút gọn phân thức 3. Các phép toán về phân thức + Vấn đề 1. Quy đồng mẫu thức của nhiều phân thức + Vấn đề 2. Thực hiện các phép toán trên phân thức Chương III . Phương trình bậc nhất một ẩn 1. Mở đầu về phương trình + Vấn đề 1. Chứng minh một số là nghiệm của một phương trình + Vấn đề 2. Số nghiệm của một phương trình + Vấn đề 3. Chứng minh hai phương trình tương đương 2. Phương trình bậc nhất một ẩn + Vấn đề 1. Phương trình đưa được về dạng phương trình bậc nhất + Vấn đề 2. Phương trình tích + Vấn đề 3. Phương trình chứa ẩn ở mẫu 3. Giải toán bằng cách lập phương trình + Vấn đề 1. Loại so sánh + Vấn đề 2. Loại tìm số gồm hai, ba chữ số + Vấn đề 3. Loại làm chung – làm riêng một việc + Vấn đề 4. Loại chuyển động đều + Vấn đề 5. Loại có nội dung hình học Chương IV . Bất phương trình bậc nhất một ẩn 1. Bất đẳng thức + Vấn đề 1. Chứng minh bđt dựa vào định nghĩa và tính chất cơ bản + Vấn đề 2. Phương pháp làm trội + Vấn đề 3. Chứng minh bất đẳng thức dựa vào bất đẳng thức cô–si 2. Bất phương trình bậc nhất một ẩn 3. Phương trình chứa dấu giá trị tuyệt đối [ads] PHẦN B . HÌNH HỌC 8 Chương I . Tứ giác 1. Tứ giác + Vấn đề 1. Sử dụng tính chất về các góc của một tứ giác để tính góc + Vấn đề 2. Sử dụng bất đẳng thức tam giác để giải các bài toán liên hệ đến các cạnh của một tứ giác 2. Hình thang – hình thang vuông + Vấn đề 1. Tính chất các góc của một hình thang + Vấn đề 2. Chứng minh một tứ giác là hình thang, hình thang vuông 3. Hình thang cân + Vấn đề 1. Sử dụng tính chất của hình thang cân để tính toán và chứng minh + Vấn đề 2. Chứng minh một tứ giác là hình thang cân 4. Đường trung bình của tam giác, của hình thang 5. Đối xứng trục 6. Hình bình hành + Vấn đề 1. Vận dụng tính chất của hình bình hành để chứng minh tính chất hình học + Vấn đề 2. Vận dụng dấu hiệu nhận biết để chứng minh một tứ giác là hình bình hành 7. Đối xứng tâm 8. Hình chữ nhật + Vấn đề 1. Vận dụng dấu hiệu nhận biết để chứng minh một tứ giác là hình chữ nhật + Vấn đề 2. Vận dụng kiến thức hình chữ nhật để giải toán 9. Hình thoi + Vấn đề 1. Vận dụng dấu hiệu nhận biết để chứng minh một tứ giác là hình thoi + Vấn đề 2. Vận dụng kiến thức hình thoi để giải toán 10. Hình vuông + Vấn đề 1. Vận dụng dấu hiệu nhận biết để chứng minh một tứ giác là hình vuông + Vấn đề 2. Vận dụng kiến thức hình vuông để giải toán Chương II . Đa giác Chương III . Tam giác đồng dạng 1. Định lí Ta-lét trong tam giác – tính chất đường phân giác + Vấn đề 1. Tính độ dài đoạn thẳng, tỉ số, diện tích + Vấn đề 2. Chứng minh hai đường thẳng song song 2. Tam giác đồng dạng + Vấn đề 1. Sử dụng tam giác đồng dạng để tính toán + Vấn đề 2. Chứng minh hai tam giác đồng dạng

Nguồn: toanmath.com

Đọc Sách

Chuyên đề hình chữ nhật
Nội dung Chuyên đề hình chữ nhật Bản PDF - Nội dung bài viết Chuyên đề hình chữ nhậtI. Tóm tắt lý thuyếtII. Bài tập và các dạng toán Chuyên đề hình chữ nhật Tài liệu này bao gồm 31 trang, cung cấp tóm tắt lý thuyết cần thiết về hình chữ nhật, phân dạng và hướng dẫn giải các dạng toán liên quan. Bên cạnh đó, tài liệu cũng chọn lọc các bài tập từ cơ bản đến nâng cao trong chuyên đề hình chữ nhật, kèm theo đáp án và lời giải chi tiết. Đây là nguồn tư liệu hữu ích để hỗ trợ học sinh trong quá trình học tập chương trình Hình học 8 chương 1: Tứ giác. I. Tóm tắt lý thuyết Hình chữ nhật là tứ giác có bốn góc vuông, đồng thời có tất cả các tính chất của hình bình hành và hình thang cân. Trong hình chữ nhật, hai đường chéo bằng nhau và cắt nhau tại trung điểm. Để nhận biết hình chữ nhật, có thể dựa vào ba góc vuông, một góc vuông hoặc các đường chéo bằng nhau. Ngoài ra, tài liệu cũng áp dụng các tính chất của hình chữ nhật vào tam giác vuông. II. Bài tập và các dạng toán Trên tài liệu cung cấp các dạng bài tập minh họa và áp dụng tính chất hình chữ nhật để chứng minh các tính chất hình học. Ngoài ra, có các bài tập nâng cao về đường trung tuyến của tam giác vuông và đường thẳng song song. Phần phiếu tự luyện cũng tập trung vào chứng minh tứ giác là hình chữ nhật, tính chất đường trung tuyến của tam giác vuông và tìm điều kiện để tứ giác là hình chữ nhật. Đây là tài liệu hữu ích để học sinh nắm vững kiến thức về hình chữ nhật và phát triển tư duy trong việc giải các bài toán hình học.
Chuyên đề đối xứng tâm
Nội dung Chuyên đề đối xứng tâm Bản PDF - Nội dung bài viết Chuyên đề đối xứng tâmI. Tóm tắt lý thuyếtII. Bài tập và các dạng toánA. Các dạng bài cơ bản – nâng caoB. Dạng bài nâng cao phát triển tư duyC. Phiếu bài tự luyện Chuyên đề đối xứng tâm Chuyên đề đối xứng tâm là tài liệu gồm 16 trang, tóm tắt lý thuyết trọng tâm cần đạt, phân dạng và hướng dẫn giải các dạng toán về đối xứng tâm. Tài liệu này tuyển chọn các bài tập từ cơ bản đến nâng cao trong chuyên đề đối xứng tâm, cung cấp đáp án và lời giải chi tiết để hỗ trợ học sinh trong quá trình học tập chương trình Hình học 8 chương 1: Tứ giác. I. Tóm tắt lý thuyết Hai điểm đối xứng qua một điểm: Hai điểm được gọi là đối xứng với nhau qua điểm o nếu o là trung điểm của đoạn thẳng nối hai điểm ấy. Hai hình đối xứng qua một điểm: Hai hình gọi là đối xứng với nhau qua điểm O nếu một điểm bất kì thuộc hình này đối xứng với một điểm thuộc hình kia qua điểm O và ngược lại. Hình có tâm đối xứng: Điểm O gọi là tâm đối xứng của hình H nếu điểm đối xứng với mỗi điểm thuộc hình qua điểm O cũng thuộc hình H. II. Bài tập và các dạng toán A. Các dạng bài cơ bản – nâng cao Dạng 1: Chứng minh hai điểm hoặc hai hình đối xứng với nhau qua một điểm. Phương pháp giải: Sử dụng định nghĩa hai điểm đối xứng hoặc hai hình đối xứng với nhau qua một điểm. Dạng 2: Sử dụng tính chất đối xứng trục để giải toán. Phương pháp giải: Sử dụng nhận xét hai đoạn thẳng (góc, tam giác) đối xứng vói nhau qua một đường thẳng thì bằng nhau. Dạng 3: Tổng hợp. B. Dạng bài nâng cao phát triển tư duy C. Phiếu bài tự luyện Với những thông tin trên, chuyên đề đối xứng tâm cung cấp một cách phân tích chi tiết, cụ thể và dễ hiểu về các khái niệm và bài tập liên quan đến đối xứng tâm trong hình học. Đây là tài liệu hữu ích giúp học sinh rèn luyện kỹ năng và phát triển tư duy trong quá trình học tập.
Chuyên đề hình bình hành
Nội dung Chuyên đề hình bình hành Bản PDF - Nội dung bài viết Chuyên đề hình bình hành Chuyên đề hình bình hành Tài liệu chuyên đề hình bình hành gồm 16 trang, cung cấp tóm tắt lý thuyết cần đạt, phân dạng và hướng dẫn giải các dạng toán liên quan đến hình bình hành. Tài liệu tuyển chọn các bài tập từ cơ bản đến nâng cao, giúp học sinh nắm vững chuyên đề trong chương trình Hình học 8 chương 1: Tứ giác. I. Tóm tắt lý thuyết Hình bình hành là tứ giác có các cặp cạnh đối song song. Trong hình bình hành, các cạnh đối bằng nhau, các góc đối bằng nhau và hai đường chéo cắt nhau tại trung điểm mỗi đường. Để nhận biết hình bình hành, ta cần quan sát các dấu hiệu như cạnh đối song song, cạnh đối bằng nhau, góc đối bằng nhau, hay đường chéo cắt nhau tại trung điểm. II. Bài tập và các dạng toán A. Các dạng bài cơ bản và nâng cao Dạng 1: Vận dụng tính chất của hình bình hành để chứng minh các tính chất hình học. Phương pháp giải: Vận dụng định nghĩa và tính chất về cạnh, góc và đường chéo. Dạng 2: Chứng minh tứ giác là hình bình hành. Phương pháp giải: Sử dụng các dấu hiệu nhận biết để chứng minh. Dạng 3: Chứng minh ba điểm thẳng hàng, các đường thẳng đồng quy. B. Phiếu bài tự luyện Phiếu bài tự luyện cung cấp thêm bài tập để học sinh ôn tập và tự kiểm tra kiến thức của mình trong chuyên đề hình bình hành. Tóm lại, tài liệu chuyên đề hình bình hành là nguồn hướng dẫn hữu ích giúp học sinh nắm vững kiến thức, rèn luyện kỹ năng giải các bài toán liên quan đến hình bình hành trong chương trình Hình học. Hãy luyện tập và học hỏi thật tốt!
Chuyên đề đối xứng trục
Nội dung Chuyên đề đối xứng trục Bản PDF - Nội dung bài viết Chuyên đề đối xứng trụcTóm tắt lý thuyết:Bài tập và các dạng toán: Chuyên đề đối xứng trục Bộ tài liệu này gồm 16 trang, chứa tóm tắt lý thuyết về trọng tâm cần đạt, phân dạng và hướng dẫn giải các dạng toán liên quan đến chuyên đề đối xứng trục. Ngoài ra, tài liệu còn tuyển chọn và trình bày các bài tập từ cơ bản đến nâng cao, kèm theo đáp án và lời giải chi tiết. Được thiết kế nhằm hỗ trợ học sinh trong quá trình học tập chương trình Hình học 8 chương 1: Tứ giác. Tóm tắt lý thuyết: Trong phần này, chúng ta sẽ tìm hiểu về hai điểm đối xứng qua một đường thẳng, hai hình đối xứng qua một đường thẳng và hình có trục đối xứng. Định nghĩa và tính chất của các khái niệm này sẽ giúp bạn hiểu rõ hơn về chuyên đề đối xứng trục. Bài tập và các dạng toán: Phần này sẽ bao gồm các dạng bài cơ bản và nâng cao liên quan đến đối xứng trục. Bạn sẽ được hướng dẫn cách chứng minh hai điểm hoặc hai hình đối xứng qua đường thẳng, sử dụng tính chất đối xứng trục để giải toán, tìm trục đối xứng của một hình và dựng hình sử dụng đối xứng trục. Các bài tập tự luyện cơ bản và nâng cao sẽ giúp bạn phát triển tư duy và hiểu sâu hơn về chuyên đề này. Đặc biệt, với việc tập trung vào các dạng bài toán liên quan đến đối xứng trục, đây sẽ là nguồn tài liệu hữu ích giúp bạn nắm vững kiến thức, rèn luyện kỹ năng giải toán một cách hiệu quả.