Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề khối đa diện, góc và khoảng cách - Đặng Việt Đông

Tài liệu gồm 134 trang tổng hợp lý thuyết, các dạng toán, phương pháp giải và bài tập có lời giải chi tiết thuộc các chuyên đề khối đa diện, góc và khoảng cách. Nội dung tài liệu gồm các phần: HÌNH ĐA DIỆN 1. Khái niệm về hình đa diện và khối đa diện 2. Hai hình bẳng nhau 3. Phân chia và lắp ghép khối đa diện 4. Khối đa diện lồi 5. Khối đa diện đều THỂ TÍCH HÌNH CHÓP 1. Nếu khối chóp đã cho có chiều cao h và diện tích đáy B thì thể tích tính theo công thức: V = 1/3.Bh. 2. Nếu khối chóp cần tính thể tích chưa biết chiều cao thì ta phải xác định được vị trí chân đường cao trên đáy. a. Chóp có cạnh bên vuông góc chiều cao chính là cạnh bên b. Chóp có hai mặt bên vuông góc đáy đường cao là giao tuyến của hai mặt bên vuông góc đáy c. Chóp có mặt bên vuông góc đáy chiều cao của mặt bên vuông góc đáy d. Chóp đều chiều cao hạ từ đỉnh đến tâm đa giác đáy e. Chóp có hình chiếu vuông góc của một đỉnh lên xuống mặt đáy thuộc cạnh mặt đáy đường cao là từ đỉnh tới hình chiếu [ads] TỈ SỐ THỂ TÍCH HÌNH LĂNG TRỤ 1. Thể tích khối lăng trụ 2. Thể tích khối hộp chữ nhật 3. Thể tích khối lập phương KHOẢNG CÁCH 1. Khoảng cách từ một điểm đến một đường thẳng: Khoảng cách từ một điểm đến một đường thẳng a là d(M, Δ) = MH, trong đó H là hình chiếu của M trên Δ. 2. Khoảng cách từ một điểm đến một mặt phẳng: Khoảng cách từ một điểm đến đến một mặt phẳng (α) là d(O, (α)) = OH, trong đó H là hình chiếu của O trên (α). + Cách 1. Tính trực tiếp: Xác định hình chiếu H của O trên (α) và tính OH + Cách 2. Sử dụng công thức thể tích + Cách 3. Sử dụng phép trượt đỉnh + Cách 4. Sử dụng tính chất của tứ diện vuông + Cách 5. Sử dụng phương pháp tọa độ 3. Khoảng cách từ một đường thẳng đến một mặt phẳng song song với nó 4. Khoảng cách giữa hai mặt phẳng song song 5. Khoảng cách giữa hai đường thẳng chéo nhau GÓC 1. Góc giữa hai đường thẳng 2. Góc giữa đường thẳng với mặt phẳng 3. Góc giữa hai mặt phẳng 4. Diện tích hình chiếu của một đa giác

Nguồn: toanmath.com

Đọc Sách

350 câu hỏi trắc nghiệm chuyên đề hình học không gian - Nhóm Toán
Tài liệu 350 câu hỏi trắc nghiệm chuyên đề hình học không gian được hoàn thiện và chia sẻ bởi các thành viên trong groups nhóm Toán, gồm 62 trang được chia thành 7 đề, mỗi đề gồm 50 câu hỏi. Trích dẫn tài liệu : + Chọn khẳng định đúng: A. Hai đường thẳng phân biệt cùng vuông góc với một đường thẳng thứ ba thì hai đường thẳng đó song song với nhau B. Hai đường thẳng phân biệt cùng vuông góc với một mặt phẳng thì hai đường thẳng đó song song với nhau C. Hai đường thẳng cùng vuông góc với một đường thẳng thứ ba thì hai đường thẳng đó song song với nhau D. Hai đường thẳng cùng vuông góc với một đường thẳng thứ ba thì hai đường thẳng đó song song với nhau [ads] + Trong các mệnh đề sau, mệnh đề nào đúng? A. Tồn tại một hình đa diện có số đỉnh và số mặt bằng nhau B. Tồn tại một hình đa diện có số cạnh bằng số đỉnh C. Số đỉnh và số mặt của một hình đa diện luôn luôn bằng nhau D. Tồn tại một hình đa diện có số cạnh và số mặt bằng nhau + Cho khối tứ diện đều ABCD. Điểm M thuộc miền trong của khối tứ diện sao cho thể tích các khối MBCD, MCDA, MDAB, MABC bằng nhau. Khi đó: A. Tất cả các mệnh đề trên đều đúng B. M cách đều tất cả các mặt của khối tứ diện đó C. M là trung điểm của đôạn thẳng nối trung điểm của 2 cạch đối diện của tứ diện D. M cách đều tất cả các đỉnh của khối tứ diện đó
225 bài toán hình học không gian trong các đề thi thử 2016 - Trần Văn Tài
Tài liệu 225 bài toán hình học không gian trong các đề thi thử 2016 do thầy Trần Văn Tài biên soạn, các bài toán được giải chi tiết. Trích dẫn tài liệu : + Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh bằng 4a, cạnh SA vuông góc với mặt phẳng đáy. Góc giữa cạnh SC và mặt phẳng (ABCD) bằng 60 độ, M là trung điểm của BC, N là điểm thuộc cạnh AD sao cho DN = a. Tính theo a thể tích khối chóp S.ABCD và khoảng cách giữa hai đường thẳng SB và MN. [ads] + Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật với AB = 2a, AD = a√3. Mặt bên SAB là tam giác cân tại S và nằm trong mặt phẳng vuông góc với mặt đáy. Biết đường thẳng SD tạo với mặt đáy một góc 45 độ. Tính thể tích của khối chóp S.ABCD và khoảng cách giữa hai đường thẳng SA và BD. + Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a. Đường thẳng SA vuông góc với mặt đáy. Góc giữa đường thẳng SB và mặt phẳng (ABC) bằng 60 độ. 1. Tính thể tích khối chóp S.ABC theo a. 2. Tính khoảng cách giữa hai đường thẳng AC và SB theo a.
Chuyên đề Thể tích - Góc - Khoảng cách trong không gian - Đỗ Bá Thành
Tài liệu gồm 36 trang trình bày các vấn đề về thể tích, góc và khoảng cách trong hình học không gian, tài liệu do tác giả Đỗ Bá Thành biên soạn. + Vấn đề 1: Thể tích khối chóp + Vấn đề 2: Thể tích khối lăng trụ + Vấn đề 3: Góc và các bài toán liên quan + Vấn đề 4: Khoảng cách [ads]
Các bài tập khối đa diện trong đề thi Đại học
Tài liệu gồm 15 trang tuyển tập và giải chi tiết các bài tập khối đa diện trong đề thi Đại học. + Bài 1. Tính thể tích của một khối đa diện + Bài 2. Sử dụng phương pháp thể tích để tìm khoảng cách + Bài 3. Các bài toán về thể tích khối đa diện có kết hợp với việc tìm giá trị lớn nhất và nhỏ nhất + Bài 4. Các bài toán về so sánh thể tích [ads]