Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi tỉnh Toán 9 năm 2023 - 2024 sở GDĐT Hà Tĩnh

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp tỉnh môn Toán 9 năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Hà Tĩnh; kỳ thi được diễn ra vào thứ Sáu ngày 12 tháng 01 năm 2024; đề thi có đáp án và lời giải chi tiết. Trích dẫn Đề học sinh giỏi tỉnh Toán 9 năm 2023 – 2024 sở GD&ĐT Hà Tĩnh : + Cho đường thẳng (d): y = (m − 1)x + 3. Tìm tất cả các giá trị của m để đường thẳng (d) cắt trục Ox, Oy lần lượt tại hai điểm A và B sao cho tam giác AOB vuông cân. + Bạn Hà làm một bài thi gồm 20 câu hỏi. Mỗi câu trả lời đúng được 5 điểm, mỗi câu trả lời sai bị trừ 1 điểm, mỗi câu bỏ qua không trả lời được 0 điểm. Tính số câu trả lời đúng, số câu trả lời sai, số câu bỏ qua không trả lời của bạn Hà, biết rằng bạn Hà được 57 điểm. + Cho hình vẽ, biết rằng AE = 2, ED = 3, CB = 6. Trong đó AB và CD cùng vuông góc với AD tại A và tại D. Tìm độ dài đoạn BE.

Nguồn: toanmath.com

Đọc Sách

Đề thi học sinh giỏi cấp tỉnh Toán 9 năm 2021 - 2022 sở GDĐT Thái Nguyên
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp tỉnh môn Toán 9 năm học 2021 – 2022 sở Giáo dục và Đào tạo UBND tỉnh Thái Nguyên. Trích dẫn Đề thi học sinh giỏi cấp tỉnh Toán 9 năm 2021 – 2022 sở GD&ĐT Thái Nguyên : + Cho phương trình x2 – 2(m + 1)x + 4m − m2 = 0 (m là tham số). a. Giải phương trình với m = 1. b. Chứng minh rằng với mọi giá trị của m phương trình luôn có hai nghiệm phân biệt. c. Tìm các giá trị của m để phương trình có hai nghiệm phân biệt x1, x2 thỏa mãn: x12 + 2(m + 1)x2 – 4 = 0. + Cho tam giác nhọn ABC (AB < AC) nội tiếp đường tròn (O). Gọi K là hình chiếu vuông góc của A trên cạnh BC. E, F lần lượt là hình chiếu vuông góc của K trên các cạnh AB, AC. a. Chứng minh AEF = ACB. Từ đó chỉ ra tứ giác BCFE nội tiếp đường tròn. b. Gọi I là giao điểm của hai đường thẳng BC và EF. Chứng minh rằng IK2 = IB.IC. c. Đường thẳng IA cắt đường tròn (O) tại điểm J (J khác A). Gọi D là tâm đường tròn ngoại tiếp tứ giác BCFE. Chứng minh rằng ba điểm D, K, J thẳng hàng. + Chứng minh rằng nếu a là số tự nhiên không chia hết cho 5 và không chia hết cho 7 thì (a4 − 1)(a4 + 15a2 + 1) chia hết cho 35. Cho m, n, p là ba số nguyên dương thỏa mãn mn = p(m + n) và m, p là hai số nguyên tố cùng nhau. Chứng minh rằng mnp là số chính phương.
Đề thi học sinh giỏi Toán 9 cấp tỉnh năm 2021 - 2022 sở GDĐT Hải Dương
Thứ Năm ngày 20 tháng 01 năm 2022, sở Giáo dục và Đào tạo tỉnh Hải Dương tổ chức kì thi chọn học sinh giỏi cấp tỉnh môn Toán lớp 9 THCS năm học 2021 – 2022. Đề thi học sinh giỏi Toán 9 cấp tỉnh năm 2021 – 2022 sở GD&ĐT Hải Dương gồm 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 150 phút.
Đề thi học sinh giỏi Toán 9 năm 2021 - 2022 phòng GDĐT Đông Anh - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi học sinh giỏi Toán 9 năm 2021 – 2022 phòng GD&ĐT Đông Anh – Hà Nội.
Đề thi chọn HSG Toán 9 năm 2021 - 2022 phòng GDĐT Lộc Ninh - Bình Phước
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi chọn HSG Toán 9 năm 2021 – 2022 phòng GD&ĐT Lộc Ninh – Bình Phước.