Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề lập đội tuyển thi HSG Toán Quốc gia năm 2020 2021 sở GD ĐT Bình Định

Nội dung Đề lập đội tuyển thi HSG Toán Quốc gia năm 2020 2021 sở GD ĐT Bình Định Bản PDF Thứ Hai ngày 09 tháng 11 năm 2020, sở Giáo dục và Đào tạo tỉnh Bình Định tổ chức kỳ thi lập đội tuyển tham dự kỳ thi học sinh giỏi Toán cấp Quốc gia năm học 2020 – 2021. Đề lập đội tuyển thi HSG Toán Quốc gia năm 2020 – 2021 sở GD&ĐT Bình Định gồm 01 trang với 05 bài toán tự luận, thời gian làm bài 180 phút. Trích dẫn đề lập đội tuyển thi HSG Toán Quốc gia năm 2020 – 2021 sở GD&ĐT Bình Định : + Cho tam giác nhọn ABC không cân và nội tiếp đường tròn (O). Trong tam giác ABC lấy điểm P sao cho AP vuông góc với BC. Kẻ PE, PF lần lượt vuông góc với AB, AC (E thuộc AB, F thuộc AC). Đường tròn ngoại tiếp tam giác AEF cắt đường tròn (O) tại điểm thứ hai là G (khác điểm A). Chứng minh rằng ba đường thẳng GP, BF, CE đồng quy tại một điểm. + Cho đường tròn tâm O và tam giác nhọn ABC nội tiếp đường tròn (O) có trực tâm H, trong đó AB < BC. Trên tia BO kéo dài lấy điểm D sao cho ADC = ABC. Một đường thẳng đi qua điểm H song song với đường thẳng BC cắt cung nhỏ AC tại điểm E. Chứng minh rằng BH = DE. + Cho n là số nguyên dương không nhỏ hơn 3 và các điểm A1, A2 … An cùng nằm trên một đường tròn. Có tối đa bao nhiêu tam giác nhọn có đỉnh là ba điểm trong số các điểm trên.

Nguồn: sytu.vn

Đọc Sách

Đề thi chọn HSG lớp 12 môn Toán THPT cấp tỉnh năm học 2017 2018 sở GD và ĐT Phú Thọ
Nội dung Đề thi chọn HSG lớp 12 môn Toán THPT cấp tỉnh năm học 2017 2018 sở GD và ĐT Phú Thọ Bản PDF Đề thi chọn HSG Toán lớp 12 THPT cấp tỉnh năm học 2017 – 2018 sở GD và ĐT Phú Thọ gồm 6 trang, thời gian làm bài 180 phút, đề thi gồm 2 phần: + Phần tư luận (8 điểm): Gồm 4 bài toán tự luận + Phần trắc nghiệm (12 điểm): Gồm 40 câu trắc nghiệm
Lời giải và bình luận đề thi VMO 2018
Nội dung Lời giải và bình luận đề thi VMO 2018 Bản PDF Tài liệu gồm 22 trang hướng dẫn giải và bình luận đề thi VMO 2018 (Đề thi chọn học sinh giỏi quốc gia THPT năm 2018 của Bộ giáo dục và Đào tạo). Kỳ thi VMO 2018 được diễn ra trong 2 ngày 11 và 12/01/2018 với tổng cộng 7 bài toán. Tài liệu được biên soạn bởi các thầy, cô giáo và thành viên trong nhóm Epsilon: Trần Nam Dũng, Võ Quốc Bá Cẩn, Lê Phúc Lữ, Trần Quang Hùng, Nguyễn Lê Phước, Nguyễn Văn Huyện.
Đề thi chọn học sinh giỏi lớp 12 môn Toán cấp tỉnh THPT năm học 2017 2018 sở GD và ĐT Hòa Bình
Nội dung Đề thi chọn học sinh giỏi lớp 12 môn Toán cấp tỉnh THPT năm học 2017 2018 sở GD và ĐT Hòa Bình Bản PDF Đề thi chọn học sinh giỏi Toán lớp 12 cấp tỉnh THPT năm học 2017 – 2018 sở GD và ĐT Hòa Bình gồm 6 bài toán tự luận, thời gian làm bài 180 phút, đề thi có lời giải chi tiết . Trích dẫn đề thi chọn học sinh giỏi Toán lớp 12 : + Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật với AB = a√2, BC = a và SA = SB = SC = SD = 2a. Gọi K là hình chiếu vuông góc của điểm B trên AC và H là hình chiếu vuông góc của K trên SA. a) Tính thể tích khối chóp S.ABCD theo a. b) Tính diện tích xung quanh của hình nón được tạo thành khi quay tam giác ADC quanh AD theo a. c) Tính cosin góc giữa đường thẳng SB và mặt phẳng (BKH). [ads] + Cho đa giác lồi có 14 đỉnh. Gọi X là tập hợp các tam giác có ba đỉnh là ba đỉnh của đa giác đã cho. Chọn ngẫu nhiên trong X một tam giác. Tính xác suất để tam giác được chọn không có cạnh nào là cạnh của đa giác đã cho. + Trong mặt phẳng với hệ trục tọa độ Oxy, cho điểm K(-2;-5) và đường tròn (C) có phương trình (x – 1)^2 + (y – 1)^2 = 10. Đường tròn (C2) tâm K cắt đường tròn (C) tại hai điểm A, B sao cho dây cung AB = 2√5. Viết phương trình đường thẳng AB. File WORD (dành cho quý thầy, cô):
Đề thi học sinh giỏi lớp 12 môn Toán cấp tỉnh năm học 2017 2018 sở GD và ĐT Ninh Bình
Nội dung Đề thi học sinh giỏi lớp 12 môn Toán cấp tỉnh năm học 2017 2018 sở GD và ĐT Ninh Bình Bản PDF Đề thi học sinh giỏi Toán lớp 12 cấp tỉnh năm học 2017 – 2018 sở GD và ĐT Ninh Bình gồm 8 trang với 56 câu trắc nghiệm khách quan, 05 câu tự luận, kỳ thi diễn ra vào ngày 06 tháng 12 năm 2017, đề thi có đáp án . Trích dẫn đề thi HSG : + Cho hàm số y = log1/3 x. Mệnh đề nào dưới đây là mệnh đề sai? A. Đồ thị hàm số đã cho có một đường tiệm cận đứng B. Hàm số đã cho có đạo hàm y’ = -1/xlog3 ∀x ≠ 0 C. Hàm số đã cho có tập xác định D = R\{0} D. Hàm số đã cho nghịch biến trên mỗi khoảng mà nó xác định [ads] + Bồn chứa nước SƠN HÀ có hình trụ kín cả 2 đáy, trong đó bán kính đường tròn đáy là r và chiều cao của bồn là h. Nhà máy sản xuất bồn tùy theo yêu cầu của khách hàng và cứ tính theo đơn giá 1 triệu đồng 1 m2 vật liệu làm bồn. Một khách hàng đặt 10 triệu đồng để làm một bồn nước SƠN HÀ. Anh hay chị hãy tính giúp vị khách đó kích thước của bồn để bồn đựng được nhiều nước nhất. + Cho hình chóp S.ABCD có đáy là hình bình hành. Gọi K là trung điểm của SC. Mặt phẳng qua AK cắt các cạnh SB, SD lần lượt tại M và N. Gọi V1, V thứ tự là thể tích của khối chóp S.AMKN và khối chóp S.ABCD. Tìm giá trị nhỏ nhất và giá trị lớn nhất của tỷ số V1/V. File WORD (dành cho quý thầy, cô):