Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi vào 10 môn Toán (chuyên) 2022 2023 trường chuyên Hoàng Văn Thụ Hoà Bình

Nội dung Đề thi vào 10 môn Toán (chuyên) 2022 2023 trường chuyên Hoàng Văn Thụ Hoà Bình Bản PDF - Nội dung bài viết Đề thi vào 10 môn Toán (chuyên) 2022-2023 trường chuyên Hoàng Văn Thụ Hoà Bình Đề thi vào 10 môn Toán (chuyên) 2022-2023 trường chuyên Hoàng Văn Thụ Hoà Bình Chúng tôi xin giới thiệu đến quý thầy cô và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 môn Toán (chuyên) năm học 2022-2023 của trường THPT chuyên Hoàng Văn Thụ, tỉnh Hoà Bình. Kỳ thi sẽ diễn ra vào Chủ Nhật ngày 05 tháng 06 năm 2022. Trích dẫn đề thi vào 10 môn Toán (chuyên) 2022-2023 trường chuyên Hoàng Văn Thụ - Hoà Bình: Một cửa hàng điện máy thực hiện chương trình khuyến mãi giảm giá tất cả các mặt hàng theo quy định. Ông An muốn mua một ti vi với giá niêm yết là 9,200,000 đồng và một tủ lạnh với giá niêm yết là 7,100,000 đồng. Hỏi với chương trình khuyến mãi, ông An phải trả bao nhiêu tiền? Cho tam giác ABC vuông tại B nội tiếp trong đường tròn tâm O đường kính AC bằng 2. Kẻ dây cung BD vuông góc với AC, H là giao điểm của AC và BD. Trên HC lấy điểm E sao cho E đối xứng với A qua H. Đường tròn tâm O' đường kính EC cắt đoạn BC tại I (I khác C). Chứng minh rằng: CI/CA = CE/CB. Chứng minh rằng: Ba điểm D, I, E thẳng hàng. Chứng minh rằng: HI là tiếp tuyến của đường tròn đường kính EC. Khi B thay đổi thì H thay đổi, xác định vị trí của H trên AC để diện tích tam giác O'IH lớn nhất. Cho phương trình: 2x^2 + mx + 2 = 0 (m là tham số). Tìm m để phương trình có hai nghiệm dương. Hy vọng đề thi sẽ giúp các em học sinh ôn tập hiệu quả và đạt kết quả cao trong kỳ thi sắp tới. Chúc quý thầy cô và các em thành công!

Nguồn: sytu.vn

Đọc Sách

Đề tuyển sinh lớp 10 THPT môn Toán năm 2020 - 2021 sở GDĐT Hà Nội
Sáng thứ Bảy ngày 18 tháng 07 năm 2020, sở Giáo dục và Đào tạo thành phố Hà Nội tổ chức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán năm học 2020 – 2021. Đề tuyển sinh lớp 10 THPT môn Toán năm 2020 – 2021 sở GD&ĐT Hà Nội gồm có 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 120 phút (không kể thời gian phát đề), đáp án và lời giải chi tiết của đề thi sẽ được THCS. cập nhật trong thời gian sớm nhất có thể. Trích dẫn đề tuyển sinh lớp 10 THPT môn Toán năm 2020 – 2021 sở GD&ĐT Hà Nội : + Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình: Quãng đường từ nhà An đến nhà Bình dài 3 km. Buổi sáng, An đi bộ từ nhà An đến nhà Bình. Buổi chiều cùng ngày, An đi xe đạp từ nhà Bình về nhà An trên cùng quãng đường đó với vận tốc lớn hơn vận tốc đi bộ của An là 9 km/h. Tính vận tốc đi bộ của An, biết thời gian đi buổi chiều ít hơn thời gian đi buổi sáng là 45 phút (giả định rằng An đi bộ với vận tốc không đổi trên toàn bộ quãng đường đó). + Một quả bóng bàn có dạng một hình cầu có bán kính bằng 2 cm. Tính diện tích bề mặt của quả bóng bàn đó (lấy pi = 3,14). + Trong mặt phẳng tọa độ Oxy, xét đường thẳng (d): y = mx +4 với m khác 0. a) Gọi A là giao điểm của đường thẳng (d) và trục Oy. Tìm tọa độ của điểm A. b) Tìm tất cả giá trị của m để đường thẳng (d) cắt trục Ox tại điểm B sao cho tam giác OAB là tam giác cân.
Đề tuyển sinh lớp 10 môn Toán năm 2020 - 2021 trường THPT chuyên Thái Bình (đề chung)
Đề tuyển sinh lớp 10 môn Toán năm 2020 – 2021 trường THPT chuyên Thái Bình (đề chung) là đề thi vòng 1, được dành cho tất cả các thí sinh tham dự kỳ thi, kỳ thi được diễn ra vào thứ Sáu ngày 17 tháng 07 năm 2020. Trích dẫn đề tuyển sinh lớp 10 môn Toán năm 2020 – 2021 trường THPT chuyên Thái Bình (đề chung) : + Trong mặt phẳng tọa độ Oxy, cho parabol (P): y = x^2/2 và hai đường thẳng (d1): y = 5x + 2, (d2): y = (m^2 + 1)x + m (với m là tham số). 1. Tìm m để (d1) song song với (d2). 2. Tìm m để (d2) cắt parabol (P) tại hai điểm phân biệt có hoành độ x1, x2 sao cho Q = x1 + x2 – 4x1x2 đạt giá trị nhỏ nhất. + Cho phương trình x^2 – 2(m + 1)x + m^2 – 3m = 0 (với m là tham số). 1. Giải phương trình với m = 0. 2. Tìm m để phương trình có hai nghiệm x1, x2 thỏa mãn: (x1 + 2)(x2 + 2) = 10. [ads] + Cho đường tròn (O;R) đường kính AB. Trên tia AB lấy điểm C nằm ngoài đường tròn, kẻ đường thẳng d vuông góc với AB tại C. Gọi E là trung điểm của đoạn thẳng OB, đường thẳng đi qua E cắt đưòng tròn (O) ở M và N (M khác A và B). Tia AM, AN thứ tự cắt d ở P và Q. 1. Chứng minh tứ giác BCPM nội tiếp. 2. Chứng minh AM.AP = AN.AQ. 3. Giả sử MN = 7R/4. Tính độ dài đoạn ME, NE theo R. 4. Cho A, B, C cố định. Chứng minh rằng khi MN quay quanh điểm E (M khác A và B) thì tâm của đường tròn ngoại tiếp tam giác APQ luôn nằm trên một đường thẳng cố định.
Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2020 - 2021 sở GDĐT TP HCM
Thứ Sáu ngày 17 tháng 07 năm 2020, sở Giáo dục và Đào tạo thành phố Hồ Chí Minh tổ chức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán chuyên năm học 2020 – 2021. Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2020 – 2021 sở GD&ĐT TP HCM gồm 01 trang với 06 bài toán, thời gian làm bài 150 phút, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2020 – 2021 sở GD&ĐT TP HCM : + Tìm tất cả các số nguyên dương x, y thỏa mãn phương trình 3^x – y^3 = 1. + Đường tròn (I) nội tiếp tam giác ABC tiếp xúc với các cạnh AB, BC, CA lần lượt tại D, E, F. Kẻ đường kính EJ của đường tròn (I). Gọi d là đường thẳng qua A song song với BC. Đường thẳng JD cắt d, BC lần lượt tại L, H. a) Chứng minh: E, F, L thẳng hàng. b) JA, JF cắt BC lần lượt tại M, K. Chứng minh: MH vuông góc MK. [ads] + Cho tam giác nhọn ABC (AB < BC < CA) nội tiếp đường tròn (O). Từ A kẻ đường thẳng song song với BC cắt (O) tại A1. Từ B kẻ đường thẳng song song với AC cắt (O) tại B1. Từ C kẻ đường thẳng song song với AB cắt (O) tại C1. Chứng minh rằng các đường thẳng qua A1, B1, C1 lần lượt vuông góc với BC, CA, AB đồng quy.
Đề tuyển sinh vào 10 môn Toán chuyên năm 2020 - 2021 sở GDĐT Đồng Tháp
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi tuyển sinh vào lớp 10 môn Toán chuyên năm học 2020 – 2021 sở Giáo dục và Đào tạo tỉnh Đồng Tháp; kỳ thi được diễn ra vào ngày 24 tháng 07 năm 2020; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm.