Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề số phức - Lê Văn Đoàn

Tài liệu gồm 119 trang tóm tắt lý thuyết số phức cơ bản và tuyển chọn các bài tập tự luận – trắc nghiệm về các chủ đề trong chuyên đề số phức: dạng đại số của số phức, dạng hình học của số phức và phương trình bậc hai trên tập số phức, các bài tập có đáp án và hướng dẫn giải. Tài liệu được biên soạn bởi thầy Lê Văn Đoàn. Các dạng bài tập số phức được đề cập bao gồm: DẠNG ĐẠI SỐ CỦA SỐ PHỨC + Dạng 1. Tìm các số thực x và y thỏa các điều kiện sau (nhóm sử dụng 2 số phức bằng nhau) + Dạng 2. Nhóm bài toán tìm phần thực, phần ảo, số phức liên hợp và môđun của z, w (loại 1) + Dạng 3. Nhóm bài toán tìm phần thực, phần ảo, số phức liên hợp và môđun của z (loại 2) + Dạng 4. Nhóm bài toán tìm các số phức z thỏa mãn biểu thức số phức là số thực, số thuần ảo + Dạng 5. Nhóm bài toán lấy môđun hai vế của đẳng thức số phức (đề cần tính |z| hoặc P(|z|) + Dạng 6. Nhóm bài toán chuẩn hóa số phức + Dạng 7. Nhóm bài toán sử dụng bất đẳng thức trong số phức DẠNG HÌNH HỌC CỦA SỐ PHỨC + Dạng 1. Bài toán xác định điểm biểu diễn của số phức + Dạng 2. Tập hợp điểm là đường thẳng + Dạng 3. Tập hợp điểm là đường tròn, hình tròn, hình vành khăn + Dạng 4. Tập hợp điểm là một elip + Dạng 5. Bài toán liên quan đến giá trị lớn nhất, giá trị nhỏ nhất a. Phương pháp 1. Lượng giác hóa b. Phương pháp 2. Bình phương vô hướng c. Phương pháp 3. Hình chiếu và tương giao PHƯƠNG TRÌNH BẬC HAI TRÊN TẬP SỐ PHỨC

Nguồn: toanmath.com

Đọc Sách

Chuyên đề trắc nghiệm các phép tính toán với số phức
Tài liệu gồm 33 trang, trình bày lý thuyết trọng tâm, các dạng toán trọng tâm kèm phương pháp giải và bài tập trắc nghiệm tự luyện chuyên đề các phép tính toán với số phức, có đáp án và lời giải chi tiết; hỗ trợ học sinh lớp 12 trong quá trình học tập chương trình Toán 12 phần Giải tích chương 4. A. LÝ THUYẾT TRỌNG TÂM 1) Các khái niệm cơ bản. 2) Biểu diễn hình học của số phức. 3) Phép cộng và phép trừ số phức. 4) Số phức liên hợp và môđun của số phức. 5) Phép chia cho số phức khác 0. 6) Một số các kết quả quan trọng. B. PHƯƠNG PHÁP GIẢI TOÁN + Dạng 1: Tính toán cơ bản với số phức. + Dạng 2: Bài toán quy về giải hệ phương trình nghiệm thực. + Dạng 3: Lấy môđun hai vế tìm số phức. BÀI TẬP TỰ LUYỆN. LỜI GIẢI BÀI TẬP TỰ LUYỆN.
Số phức trong đề thi THPT môn Toán (2017 - 2020)
Tài liệu gồm 13 trang, tuyển chọn 135 câu hỏi và bài tập trắc nghiệm chuyên đề số phức có đáp án, được trích từ các đề thi tốt nghiệp THPT Quốc gia môn Toán của Bộ Giáo dục và Đào tạo từ năm học 2016 – 2017 đến năm học 2019 – 2020. Tài liệu giúp học sinh lớp 12 tham khảo khi học chương trình Giải tích 12 chương 4 (số phức) và ôn thi tốt nghiệp Trung học Phổ thông môn Toán năm học 2020 – 2021. Xem thêm : Đề thi THPT Quốc gia môn Toán từ năm 2017 đến năm 2020
Số phức trong các đề thi thử THPT Quốc gia môn Toán
Tài liệu gồm 541 trang được sưu tầm và biên soạn bởi thầy giáo Th.S Nguyễn Chín Em, tuyển tập các câu hỏi và bài tập trắc nghiệm chuyên đề số phức có đáp án và lời giải chi tiết trong các đề thi thử THPT Quốc gia môn Toán những năm gần đây; giúp các em học sinh khối 12 học tốt chương trình Giải tích 12 chương 4 (số phức) và ôn thi THPT Quốc gia môn Toán. Trích dẫn tài liệu số phức trong các đề thi thử THPT QG môn Toán: + Xét các số phức z thỏa mãn (z + 2i)(z‾ + 2) là số thuần ảo. Biết rằng tập hợp tất cả các điểm biểu diễn của z là một đường tròn, tâm của đường tròn đó có tọa độ là? + Gọi S là tập hợp các số phức thỏa mãn |z − 1| = √34 và |z + 1 + mi| = |z + m + 2i|, trong đó m ∈ R. Gọi z1, z2 là hai số phức thuộc S sao cho |z1 − z2| lớn nhất, khi đó giá trị của |z1 + z2| bằng? [ads] + Cho số phức z thỏa mãn |z − 1| = |z − 2 + 3i|. Tập hợp các điểm biểu diễn số phức z là? A. Đường tròn tâm I(1; 2), bán kính R = 1. B. Đường thẳng có phương trình 2x − 6y + 12 = 0. C. Đường thẳng có phương trình x − 3y − 6 = 0. D. Đường thẳng có phương trình x − 5y − 6 = 0. + Cho các mệnh đề: (I) Số phức z = 2i là số thuần ảo. (II) Nếu số phức z có phần thực là a, số phức z0 có phần thực là a0 thì số phức z · z0 có phần thực là a·a0. (III) Tích của hai số phức z = a + bi (a, b ∈ R) và z0 = a0 + b0i (a, b ∈ R) là số phức có phần ảo là ab0 + a0b. Số mệnh đề đúng trong ba mệnh đề trên là? + Trong mặt phẳng tọa độ Oxy, gọi M, N, P lần lượt là các điểm biểu diễn các số phức z1 = 1 + i, z2 = 8 + i, z3 = 1 − 3i. Khẳng định nào sau đây là một mệnh đề đúng? A. Tam giác MNP cân, không vuông. B. Tam giác MNP đều. C. Tam giác MNP vuông, không cân. D. Tam giác MNP vuông cân.
Trắc nghiệm số phức có giải chi tiết trong các đề thi thử Toán 2018
Sau kỳ thi THPT Quốc gia 2018 môn Toán, lượng đề thi thử Toán và các tài liệu trắc nghiệm từ các trường THPT và sở GD – ĐT là rất lớn, từ nguồn đề này, quý thầy, cô trên cả nước đã tiến hành phân loại chủ đề câu hỏi, phân loại mức độ nhận thức và giải chi tiết để tạo ra những tài liệu chất lượng, phục vụ cho năm học và kỳ thi kế tiếp, trong số đó không thể thiếu chuyên đề số phức, một chủ đề quan trong của kỳ thi THPTQG môn Toán.