Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi cuối HK1 Toán 9 năm 2020 - 2021 phòng GDĐT Quận 10 - TP HCM

Đề thi cuối HK1 Toán 9 năm học 2020 – 2021 phòng Giáo dục và Đào tạo Quận 10, thành phố Hồ Chí Minh gồm 01 trang với 06 bài toán dạng tự luận, thời gian làm bài 90 phút. Trích dẫn đề thi cuối HK1 Toán 9 năm 2020 – 2021 phòng GD&ĐT Quận 10 – TP HCM : + Nhân dịp Giáng sinh, một cửa hàng bánh đưa ra các chương trình khuyến mãi hấp dẫn. Trong đó có chương trình khuyến mãi như sau: người mua hàng sẽ được giảm 20% từ hộp bánh thứ hai trở đi so với giá ban đầu là 100 000 đồng. a) Gọi số hộp bánh đã mua là x, số tiền phải trả là y, hãy biểu diễn y theo x. b) Bạn Nam có số tiền là 600 000 đồng thì mua được nhiều nhất bao nhiêu hộp bánh? + Theo quy định của công ty A, nhân viên bán hàng mỗi tháng bán được 50 sản phẩm thì hoàn thành chỉ tiêu và được nhận lương cơ bản là 8 000 000 đồng. Nếu nhân viên bán hơn 50 sản phẩm thì cứ mỗi sản phẩm vượt chỉ tiêu được hưởng 10% số tiền lời của sản phẩm đó. Anh Ba trong tháng 12 bán được 75 sản phẩm, biết mỗi sản phẩm bán ra công ty lời 100 000 đồng. Hỏi trong tháng 12 công ty trả anh Ba bao nhiêu tiền? + Từ hai điểm A và B cách nhau 1km trên mặt đất người ta nhìn thấy đỉnh núi với góc nâng lần lượt là 40° và 32°. Tính chiều cao của ngọn núi (kết quả làm tròn đến mét).

Nguồn: toanmath.com

Đọc Sách

Bộ đề ôn tập thi học kỳ 1 Toán 9 năm học 2018 - 2019 sở GD và ĐT Bắc Ninh
THCS. giới thiệu đến thầy, cô và các em bộ đề ôn tập thi học kỳ 1 Toán 9 năm học 2018 – 2019 sở GD và ĐT Bắc Ninh, đây là tuyển tập đề thi học kỳ 1 Toán 9 của sở Giáo dục và Đào tạo Bắc Ninh từ năm 1997 đến nay, các đề đều ở dạng tự luận.
Đề kiểm tra học kỳ 1 Toán 9 năm 2018 - 2019 phòng GD và ĐT Bắc Từ Liêm - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo cùng toàn thể các em học sinh lớp 9 đề kiểm tra học kỳ 1 Toán 9 năm 2018 – 2019 phòng GD và ĐT Bắc Từ Liêm – Hà Nội, đề thi nhằm đánh giá lại toàn diện năng lực môn Toán của học sinh lớp 9 sau giai đoạn học kỳ 1 vừa qua, để làm cơ sở cho việc đánh giá, xếp loại học lực, tuyển chọn học sinh giỏi Toán 9. Đề kiểm tra học kỳ 1 Toán 9 năm 2018 – 2019 phòng GD và ĐT Bắc Từ Liêm – Hà Nội gồm 1 trang với 5 bài toán tự luận, thời gian làm bài 90 phút (không tính thời gian giáo viên phát đề). [ads] Trích dẫn đề kiểm tra học kỳ 1 Toán 9 năm 2018 – 2019 phòng GD và ĐT Bắc Từ Liêm – Hà Nội : + Cho hàm số y = (m – 1)x + 3 có đồ thị là đường thẳng (d). 1) Vẽ đường thẳng (d) khi m = 2. 2) Tìm m để đường thẳng (d) song song với đường thẳng y = 2x + 1. 3) Tính khoảng cách từ gốc tọa độ đến đường thẳng được vẽ ở câu 1. + Cho điểm E thuộc nửa đường tròn tâm O, đường kính MN. Kẻ tiếp tuyến tại N của nửa đường tròn tâm O, tiếp tuyến này cắt đường thẳng ME tại D. 1) Chứng minh rằng: ∆MEN vuông tại E. Từ đó chứng minh DE.DM = DN2. 2) Từ O kẻ OI vuông góc với ME (I ∈ ME). Chứng minh rẳng: 4 điểm O; I; D; N cùng thuộc một đường tròn. 3) Vẽ đường tròn đường kính OD, cắt nửa đường tròn tâm O tại điểm thứ hai là A. Chứng minh rằng: DA là tiếp tuyến của nửa đường tròn tâm O. 4) Chứng minh rằng: góc DEA = góc DAM.
Đề kiểm tra học kỳ 1 Toán 9 năm 2017 - 2018 phòng GDĐT Vĩnh Yên - Vĩnh Phúc
Đề kiểm tra học kỳ 1 Toán 9 năm 2017 – 2018 phòng GD&ĐT Vĩnh Yên – Vĩnh Phúc gồm 04 câu trắc nghiệm và 05 câu tự luận, thời gian học sinh làm bài thi là 90 phút, đề thi có đáp án + lời giải chi tiết.
Đề kiểm tra học kỳ 1 Toán 9 năm học 2017 - 2018 phòng GD và ĐT Vĩnh Tường - Vĩnh Phúc
Đề kiểm tra học kỳ 1 Toán 9 năm học 2017 – 2018 phòng GD và ĐT Vĩnh Tường – Vĩnh Phúc gồm 4 câu hỏi trắc nghiệm và 4 bài toán tự luận, thời gian làm bài 90 phút, có đáp án và lời giải chi tiết . Trích dẫn đề thi học kỳ 1 Toán 9 : Cho đường tròn (O;R) đường kính AB. Qua A và B vẽ lần lượt hai tiếp tuyến (d) và (d’). Một đường thẳng qua O cắt đường thẳng (d) ở M và (d’) ở P. Từ O kẻ tia Ox vuông góc với MP và cắt (d’) ở N. a) Chứng minh OM = OP và tam giác NMP cân b) Chứng minh MN là tiếp tuyến của (O) c) Chứng minh AM.BN = R^2 d) Tìm vị trí của M để diện tích tứ giác AMNB là nhỏ nhất Giải : a) Xét ΔAMO và ΔBPO có: góc MAO = PBO = 90 độ (Tính chất tiếp tuyến) OA = OB (bán kính) Góc AOM = BOP (2 góc đối đỉnh) Do đó: ΔAMO = ΔBPO (g.c.g), suy ra OM = OP (2 cạnh tương ứng) Xét ΔMNP có: OM = OP (chứng minh trên) NO ⊥ MP (theo giả thiết) Suy ra ON là đường trung tuyến, đồng thời là đường cao của tam giác MNP Vậy tam giác MNP cân tại N Gọi I là hình chiếu của điểm O trên cạnh MN vuông góc OI MN tại I [ads] b) Vì tam giác MNP cân tại N nên góc OMI = OPB (2 góc đáy) Xét tam giác OMI và tam giác OPB có: Góc OIM = OBP = 90 OM = OP (chứng minh trên) Góc OMI OPB (chứng minh trên) Do đó: ΔOMI = ΔOPB (cạnh huyền – góc nhọn) Suy ra OI = OB = R Vì OI ⊥ MN tại I và OI = OB = R nên MN là tiếp tuyến của (O;R) tại I c) Xét ΔAMO và ΔBON có: góc AMO = BON (cùng phụ với góc AOM) Góc MAO = OBN = 90 (Tính chất tiếp tuyến) Do đó: ΔAMO đồng dạng với ΔBON (g.g) Suy ra AM/BO = AO/BN Suy ra AM.BN = AO.BO = R^2 ( Vì OA=OB=R) d) Ta có: MA ⊥ AB (Tính chất tiếp tuyến) NB ⊥ AB (Tính chất tiếp tuyến) Do đó: MA // NB nên AMNB là hình thang vuông Vì AMNB là hình thang vuông nên ta có: S AMNB = (AM + NB).AB/2 Mặt khác: AM = MI (Tính chất 2 tiếp tuyến cắt nhau) BN = NI (Tính chất 2 tiếp tuyến cắt nhau) Do đó: S AMNB = (MI + NI).AB/2 = MN.AB/2 Mà AB = 2R cố định nên AMNB S nhỏ nhất khi MN nhỏ nhất ⇔ MN // AB hay AM = R. Khi đó S AMNB = 2R^2 Vậy để diện tích tứ giác AMNB nhỏ nhất thì MN//AB và AM = R