Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề cuối học kì 1 (HK1) lớp 10 môn Toán năm 2022 2023 trường THPT Nguyễn Hữu Huân TP HCM

Nội dung Đề cuối học kì 1 (HK1) lớp 10 môn Toán năm 2022 2023 trường THPT Nguyễn Hữu Huân TP HCM Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề kiểm tra chất lượng cuối học kì 1 môn Toán lớp 10 năm học 2022 – 2023 trường THPT Nguyễn Hữu Huân, thành phố Hồ Chí Minh (dạng đề 100% tự luận). Trích dẫn Đề cuối kì 1 Toán lớp 10 năm 2022 – 2023 trường THPT Nguyễn Hữu Huân – TP HCM : + Cho hàm số bậc hai y = 2×2 + bx + c có đồ thị là parabol (P). Tìm b và c biết rằng (P) có hoành độ đỉnh bằng −2 và (P) đi qua điểm N(1;−2). + Cho tam giác ABC, điểm M trên cạnh BC sao cho BM = 1/3.BC, điểm E trên cạnh AC sao cho AE = 3/4.AC. a) Chứng minh rằng: ME = -2/3.AB + 5/12.AC. b) Gọi F là điểm thỏa AB = 5BF. Chứng minh rằng: ba điểm F, M, E thẳng hàng. + Vào ngày 23/11/2022, trận đấu giải chung kết World Cup 2022 giữa Pháp và Úc đã diễn ra tại sân vận động Al Janoub (Qatar) với sức chứa 40 000 người. Gần đến ngày tổ chức trận đấu, ban tổ chức chỉ còn phát hành hai loại vé là 400 USD và 200 USD (USD: Đô-la Mỹ, một loại đơn vị tiền tệ). Do điều kiện sân đấu nên số lượng vé có giá 400 USD không lớn hơn số lượng vé có giá 200 USD. Để an toàn phòng dịch, liên đoàn bóng đá yêu cầu tổng số lượng vé hai loại 400 USD và 200 USD phát hành không được quá 30% sức chứa của sân. Biết rằng số tiền thu được qua việc bán hai loại vé này không được ít hơn 3 triệu USD. Gọi x, y lần lượt là số vé giá 400 USD và 200 USD được bán ra. a) Hãy viết hệ bất phương trình bậc nhất hai ẩn x, y để biểu diễn số vé mỗi loại được bán ra đảm bảo mục đích của ban tổ chức. b) Biết rằng ban tổ chức sẽ lãi được 50 USD khi bán được một vé giá 400 USD và lãi được 30 USD khi bán được một vé giá 200 USD. Hỏi ban tổ chức cần bán bao nhiêu vé mỗi loại để thu được lợi nhuận nhiều nhất?

Nguồn: sytu.vn

Đọc Sách

Đề thi học kì 1 Toán 10 năm 2019 - 2020 trường THPT An Lạc - TP HCM
Đề thi học kì 1 Toán 10 năm 2019 – 2020 trường THPT An Lạc – TP HCM gồm 01 trang với 06 bài toán tự luận, thời gian làm bài 90 phút, đề thi có lời giải chi tiết. Trích dẫn đề thi học kì 1 Toán 10 năm 2019 – 2020 trường THPT An Lạc – TP HCM : + Hai công nhân được giao việc sơn một bức tường. Sau khi người thứ nhất làm được 7 giờ và người thứ hai làm được 4 giờ nữa thì họ sơn được 5/9 bức tường. Sau đó họ cùng làm việc với nhau trong 4 giờ thì chỉ còn lại 1/18 bức tường chưa sơn. Hỏi nếu mỗi người làm riêng thì sau bao nhiêu giờ mỗi người mới sơn xong bức tường? + Trong mặt phẳng Oxy, cho tam giác ABC có A(6;-3), B(-10;9) và C(7;-5). a) Tìm tọa độ trọng tâm G của tam giác ABC. b) Tìm tọa độ D để BGCD là hình bình hành. c) Cho điểm K(x + 2;-3x + 5), tìm x để ba điểm A, B, K thẳng hàng. + Khảo sát sự biến thiên và vẽ đồ thị (P) của hàm số y = -x2 + 4x – 6. Tìm tọa độ giao điểm của (P) và đường thẳng (d): y = -4x + 9 bằng phép tính.
Đề thi HKI Toán 10 năm 2019 - 2020 trường Nguyễn Bỉnh Khiêm - TP HCM
Đề thi HKI Toán 10 năm 2019 – 2020 trường Nguyễn Bỉnh Khiêm – TP HCM gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 90 phút, đề thi có lời giải chi tiết. Trích dẫn đề thi HKI Toán 10 năm 2019 – 2020 trường Nguyễn Bỉnh Khiêm – TP HCM : + Cho parabol (P): y = ax2 + bx + c (a khác 0). Xác định (P) (tìm a, b, c), biết rằng: (P) có đỉnh I(2;2) và đi qua điểm A(0;-2). + Trong hệ Oxy cho A(4;2), B(-3;6), C(2;1). a) Tính AB, BC, AC? b) Gọi M, N, P lần lượt là trung điểm của AB, BC, AC. Tìm tọa độ M, N, P? c) Chứng minh A, B, C tạo thành tam giác. Tìm tọa độ trọng tâm G của tam giác ABC? d) Tính AB.AC, từ đó tính góc A? + Cho tam giác ABC vuông tại A. AB = 4a, AC = 3a, AH là đường cao. a) Tính BA.BC. b) Tính AH.AC.
Đề thi học kỳ 1 Toán 10 năm 2019 - 2020 trường Trần Hưng Đạo - Hà Nội
Thứ Hai ngày 09 tháng 12 năm 2019, trường THPT Trần Hưng Đạo, quận Thanh Xuân, thành phố Hà Nội tổ chức kiểm tra chất lượng môn Toán lớp 10 giai đoạn cuối học kỳ 1 năm học 2019 – 2020. Đề thi học kỳ 1 Toán 10 năm 2019 – 2020 trường Trần Hưng Đạo – Hà Nội (đề số 2) được biên soạn theo dạng đề tự luận, đề gồm có 01 trang với 04 bài toán, học sinh có 90 phút để làm bài thi. Trích dẫn đề thi học kỳ 1 Toán 10 năm 2019 – 2020 trường Trần Hưng Đạo – Hà Nội : + Cho hàm số y = x^2 + x – 2 có (P) là đồ thị hàm số. a) Lập bảng biến thiên và vẽ đồ thị (P) của hàm số đã cho. b) Dùng đồ thị hoặc bảng biến thiên, tìm tham số m để phương trình x^2 + x – 2 = m có hai nghiệm x1, x2 phân biệt thỏa mãn x1 < 0 < x2 < 1. [ads] + Tổ sản xuất số 1 được giao nhiệm vụ sản xuất 6.000 chiếc áo sơ mi trong một số ngày nhất định. Do có sáng kiến trong sản xuất, tổ đã tăng năng suất, mỗi ngày sản xuất thêm được 140 chiếc áo, nhờ đó đã hoàn thành vượt mức kế hoạch 10% và xong trước thời hạn 5 ngày. Nếu vẫn tiếp tục làm việc với năng suất này khi đến thời hạn dự định, tổ đó sản xuất được thêm bao nhiêu chiếc áo so với nhiệm vụ được giao? + Trong mặt phẳng tọa độ Oxy, cho ba điểm A(2;0), B(-1;1), C(4;6). a) Tìm tọa độ của các vectơ AB, AC. Chứng minh rằng A, B, C không thẳng hàng. b) Tính chu vi và diện tích của tam giác ABC. c) Gọi M là trung điểm của cạnh AB. Tìm tọa độ điểm K sao cho 4CM + 3CK = 0. d) Đường phân giác trong góc A của tam giác ABC cắt cạnh BC tại điểm D. Tìm tọa  độ của D.
Đề thi học kỳ 1 Toán 10 năm 2019 - 2020 trường THPT Trường Chinh - TP HCM
Đề thi học kỳ 1 Toán 10 năm 2019 – 2020 trường THPT Trường Chinh – TP HCM gồm 01 trang với 08 bài toán dạng tự luận, thời gian làm bài 90 phút, đề thi có lời giải chi tiết. Trích dẫn đề thi học kỳ 1 Toán 10 năm 2019 – 2020 trường THPT Trường Chinh – TP HCM : + Viết phương trình đường thẳng d biết d đi qua điểm M(2;3) và song song với đường thẳng delta: y = 3x + 1. + Cho tam giác ABC có A(2;3); B(-1;-1); C(6;0). a) Tính độ dài AB; AC; BC suy ra tam giác ABC vuông cân. b) Tìm tọa độ điểm M thỏa MA + MB + MC = BC. + Cho tam giác ABC có AB = 5a, AC = 7a, góc A bằng 120 độ. Tính BC và diện tích tam giác ABC.