Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề phương pháp tọa độ trong không gian - Lư Sĩ Pháp

Tài liệu gồm 156 trang phân dạng và hướng dẫn giải các dạng toán thuộc các chủ đề: hệ trục tọa độ Oxyz, phương trình mặt phẳng, phương trình đường thẳng trong không gian … thuộc chương trình Hình học 12 chương 3 – phương pháp tọa độ trong không gian, tài liệu được biên soạn bởi thầy Lư Sĩ Pháp. §1. HỆ TỌA ĐỘ TRONG KHÔNG GIAN Vấn đề 1 . Tìm tọa độ của một vectơ và các yếu tố liên quan đến vectơ thỏa mãn một số điều kiện cho trước. Sử dụng định nghĩa và khái niệm có liên quan đến vectơ: Tọa độ các vectơ; độ dài của vectơ; tổng hiệu của hai vectơ; tính các tọa độ trung điểm của đoạn thẳng; trọng tâm của tam giác. Vấn đề 2 . Tích vô hướng và các ứng dụng của tích vô hướng. Sử dụng định nghĩa tích vô hướng và biểu thức tọa độ của tích vô hướng. Sử dụng các công thức tính khoảng cách giữa hai điểm, tính góc giữa hai vectơ. Vấn đề 3 . Lập phương trình mặt cầu – xác định tâm và bán kính mặt cầu có phương trình cho trước. Để viết phương trình mặt cầu (S), ta cần xác định tâm và bán kính mặt cầu. [ads] §2. PHƯƠNG TRÌNH MẶT PHẲNG Vấn đề 1 . Tích có hướng của hai vectơ và các ứng dụng. Sử dụng định nghĩa của tích có hướng của hai vectơ và các tính chất của tích có hướng. Sử dụng các công thức tính diện tích, thể tích. Vấn đề 2 . Viết phương trình tổng quát của mặt phẳng. Loại 1. Viết phương trình mặt phẳng (α) khi biết vectơ pháp tuyến n và một điểm M0 thuộc (α). Loại 2. Viết phương trình mặt phẳng (α) chứa ba điểm A, B, C không thẳng hàng (hay đi qua ba điểm A, B, C). Loại 3. Viết phương trình mặt phẳng (α) chứa điểm M0 và song song với mặt phẳng (β). Loại 4. Viết phương trình mặt phẳng (α) chứa hai điểm M, N và vuông góc với mặt phẳng (β). Vấn đề 3 . Vị trí tương đối của hai mặt phẳng. Vấn đề 4 . Khoảng cách và góc. Khoảng cách từ một điểm đến một mặt phẳng. Góc giữa hai mặt phẳng. Vấn đề 5 . Bài toán liên hệ giữa mặt phẳng và mặt cầu. Viết phương trình mặt cầu, xác định tâm và bán kính của mặt cầu (S). Viết phương trình tiếp diện của mặt cầu. Mặt phẳng (α) tiếp xúc với mặt cầu (S) có tâm I bán kính r ⇔ d(I;(α)) = r. §3. PHƯƠNG TRÌNH ĐƯỜNG THẲNGTRONG KHÔNG GIAN Vấn đề 1 . Viết phương trình tham số và phương trình chính tắc của đường thẳng ∆. Vấn đề 2 . Vị trí tương đối giữa hai đường thẳng trong không gian. Vấn đề 3 . Xét vị trí tương đối giữa đường thẳng và mặt phẳng. Vấn đề 4 . Tính khoảng cách.

Nguồn: toanmath.com

Đọc Sách

600 câu vận dụng cao phương pháp tọa độ trong không gian ôn thi THPT môn Toán
Tài liệu gồm 71 trang, được sưu tầm và tổng hợp bởi Tư Duy Mở Trắc Nghiệm Toán Lý, tuyển chọn 600 câu vận dụng cao (VDC) phương pháp tọa độ trong không gian có đáp án, giúp học sinh ôn thi THPT môn Toán. Trích dẫn tài liệu 600 câu vận dụng cao phương pháp tọa độ trong không gian ôn thi THPT môn Toán: + Trong không gian Oxyz, cho hình lăng trụ tam giác đều ABC.A1B1C1 có A1(√3; −1; 1), hai đỉnh B, C thuộc trục Oz và AA1 = 1, (C không trùng với O). Biết u = (a; b; 2) là một véc-tơ chỉ phương của đường thẳng A1C. Tính T = a2 + b. + Trong không gian với hệ trục tọa độ Oxyz cho các điểm A(2; 3; 3), B(−2; −1; 1). Gọi (S) và (S0) là hai mặt cầu thay đổi nhưng luôn tiếp xúc với đường thẳng AB lần lượt tại các tiếp điểm A, B đồng thời tiếp xúc ngoài với nhau tại M(a; b; c). Tính giá trị của a + b + c biết rằng khoảng cách từ M tới mặt phẳng (P): x + 2y − 2z + 2018 = 0 đạt giá trị lớn nhất. [ads] + Trong không gian, cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và B với AB = BC = a, AD = 2a, cạnh bên SA = a và SA vuông góc với đáy. Gọi E là trung điểm của AD. Tính diện tích S của mặt cầu ngoại tiếp hình chóp S.CDE.
Chuyên đề phương pháp tọa độ trong không gian - Nguyễn Tăng Vũ
Tài liệu gồm 18 trang, được biên soạn bởi thầy giáo Nguyễn Tăng Vũ (phát hành ngày 11 tháng 04 năm 2020), trình bày tóm tắt lý thuyết, một số ví dụ minh họa và tuyển chọn bài tập các chuyên đề trong chương trình Hình học 12 chương 3: Phương pháp tọa độ trong không gian; tài liệu giúp học sinh học tốt chương trình Toán 12 và ôn thi tốt nghiệp THPT, tuyển sinh vào Đại học – Cao đẳng. Khái quát nội dung tài liệu chuyên đề phương pháp tọa độ trong không gian – Nguyễn Tăng Vũ: Chủ đề 1 . Phương trình tổng quát của đường thẳng. 1. Phương trình tổng quát của đường thẳng. 2. Vị trí tương đối của hai đường thẳng. 3. Bài tập. Chủ đề 2 . Phương trình tham số của đường thẳng. 1. Lý thuyết. 2. Ví dụ. 3. Bài tập. Chủ đề 3 . khoảng cách – góc. 1. Khoảng cách từ một điểm đến đường thẳng. 2. Góc giữa hai đường thẳng. 3. Bài tập. [ads] Chủ đề 4 . Phương trình đường tròn. 1. Phương trình đường tròn. 2. Phương trình tiếp tuyến. 3. Bài tập. Chủ đề 5 . Phương trình chính tắc của elip. 1. Tóm tắt lý thuyết. 2. Bài tập. Chủ đề 6 . Bài tập tổng hợp. 1. Bài tập về tam giác – tứ giác. 2. Bài tập đường tròn. 3. Bài tập tổng hợp.
Tổng ôn tập TN THPT 2020 môn Toán Phương trình đường thẳng
Tài liệu gồm 45 trang, được tổng hợp và biên soạn bởi thầy giáo Nguyễn Bảo Vương, tuyển chọn các câu hỏi và bài tập trắc nghiệm chuyên đề phương trình đường thẳng; có đáp án và lời giải chi tiết, giúp học sinh tổng ôn kiến thức để chuẩn bị cho kỳ thi tốt nghiệp THPT 2020 môn Toán. Khái quát nội dung tài liệu tổng ôn tập TN THPT 2020 môn Toán: Phương trình đường thẳng: Vấn đề 1. Xác định các yếu tố cơ bản của đường thẳng. Vấn đề 2. Viết phương trình đường thẳng. Vấn đề 3. Khoảng cách và góc. Vấn đề 4. Vị trí tương đối.
Tổng ôn tập TN THPT 2020 môn Toán Phương trình mặt phẳng
Tài liệu gồm 35 trang, được tổng hợp và biên soạn bởi thầy giáo Nguyễn Bảo Vương, tuyển chọn các câu hỏi và bài tập trắc nghiệm chuyên đề phương trình mặt phẳng; có đáp án và lời giải chi tiết, giúp học sinh tổng ôn kiến thức để chuẩn bị cho kỳ thi tốt nghiệp THPT 2020 môn Toán. Khái quát nội dung tài liệu tổng ôn tập TN THPT 2020 môn Toán: Phương trình mặt phẳng: Vấn đề 1. Xác định yếu tố cơ bản của mặt phẳng. Vấn đề 2. Khoảng cách từ điểm đến mặt phẳng, từ mặt phẳng đến mặt phẳng. Vấn đề 3. Góc của hai mặt phẳng. Vấn đề 4. Viết phương trình mặt phẳng.