Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi Olympic 27 tháng 4 Toán 10 năm 2023 sở GDĐT Bà Rịa - Vũng Tàu

giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề thi Olympic 27 tháng 4 môn Toán 10 năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Bà Rịa – Vũng Tàu; đề thi có đáp án và lời giải chi tiết; kỳ thi được diễn ra vào ngày 07 tháng 03 năm 2023. Trích dẫn Đề thi Olympic 27 tháng 4 Toán 10 năm 2023 sở GD&ĐT Bà Rịa – Vũng Tàu : + Một nhà máy sử dụng ba dây chuyền để sản xuất bánh kẹo và cho ra thị trường hai sản phẩm: gồm loại 1 và loại 2 trong một chu trình sản xuất. Để sản xuất ra một tấn sản phẩm loại 1 cần sử dụng dây chuyền I trong 1 giờ, dây chuyền II trong 2 giờ và dây chuyền III trong 3 giờ, đồng thời nhà máy thu về khoản lợi nhuận 40 triệu đồng. Để sản xuất ra một tấn sản phẩm loại 2 cần sử dụng dây chuyền I trong 6 giờ, dây chuyền II trong 3 giờ và dây chuyền III trong 2 giờ, đồng thời nhà máy thu về khoản lợi nhuận 50 triệu đồng. Biết rằng dây chuyền I hoạt động không quá 36 giờ, dây chuyền II hoạt động không quá 23 giờ và dây chuyền III hoạt động không quá 27 giờ. Hãy lập phương án sản xuất cho nhà máy để tiền lãi thu được nhiều nhất. + Từ các chữ số 1, 2, 3, 4, 5, 6, 7, 8, 9 có thể lập được bao nhiêu số tự nhiên có 5 chữ số mà trong các số lập được mỗi chữ số có mặt không quá hai lần. + Cho bộ ba số thực không đồng thời bằng nhau (a; b; c). Người ta thực hiện liên tiếp các thao tác thay bộ ba số đang có thành bộ ba số mới. Mỗi lần từ bộ ba số (x; y; z) đang có sẽ được thay bởi bộ số (x – y; y − z; z − x). Chứng minh rằng từ bộ số (a; b; c), sau hữu hạn bước thực hiện theo quy tắc đã cho, trong bộ ba số thu được sẽ có ít nhất một số lớn hơn 100.

Nguồn: toanmath.com

Đọc Sách

Đề học sinh giỏi Toán 10 chuyên năm 2022 - 2023 sở GDĐT Vĩnh Phúc
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề thi chọn học sinh giỏi môn Toán 10 THPT chuyên năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Vĩnh Phúc; đề thi hình thức tự luận, gồm 01 trang với 05 bài toán, thời gian làm bài 180 phút (không kể thời gian giao đề). Trích dẫn Đề học sinh giỏi Toán 10 chuyên năm 2022 – 2023 sở GD&ĐT Vĩnh Phúc : + Cho bộ ba số xyp trong đó x y là các số nguyên dương và p là số nguyên tố. Xét phương trình: 5 4 1 y xx p. a. Với p = 2, chứng minh rằng không tồn tại x y nguyên dương thỏa mãn phương trình trên. b. Tìm tất cả các bộ ba số xyp thỏa mãn phương trình trên. + Cho tam giác nhọn ABC (AB ≤ AC) nội tiếp đường tròn (O) và ngoại tiếp đường tròn (I). Đường tròn nội tiếp (I) của tam giác ABC tiếp xúc với các cạnh BC CA AB lần lượt tại DEF. Đường thẳng qua D vuông góc với EF cắt EF tại điểm X và cắt đường tròn (I) tại KK D. a. Chứng minh rằng XE AC BC AB XF AB BC AC b. Đường thẳng AK cắt (O) tại điểm LL A. Các tia KI IL cắt đường tròn ngoại tiếp tam giác BIC lần lượt tại NMN IM I. Đường tròn ngoại tiếp các tam giác KFB KEC cắt đường thẳng EF lần lượt tại PQ P FQ E. Chứng minh rằng các điểm NCP thẳng hàng. c. Chứng minh rằng tứ giác MNPQ nội tiếp một đường tròn. + Cho tập hợp S = {1; 2; 3; …; 2022}. Một tập con A của S được gọi là tập con “Tốt” của tập S nếu trong A có ba số phân biệt xyz thỏa mãn tính chất: tồn tại ba số abc phân biệt trong S sao cho x b cy c az a b. Số tự nhiên n n (1 2022) được gọi là số “Đẹp” của tập S nếu mọi tập con có n phần tử của tập S đều là tập con “Tốt” của tập S. a. Chứng minh rằng n = 1012 không phải là số “Đẹp” của tập S. b. Tìm số “Đẹp” nhỏ nhất của tập S.
Đề học sinh giỏi Toán 10 cấp tỉnh năm 2022 - 2023 sở GDĐT Hải Dương
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề thi chọn học sinh giỏi môn Toán 10 THPT cấp tỉnh năm học 2022 – 2023 sở Giáo dục và Đào tạo UBND tỉnh Hải Dương; kỳ thi được diễn ra vào ngày 10 tháng 04 năm 2023; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn Đề học sinh giỏi Toán 10 cấp tỉnh năm 2022 – 2023 sở GD&ĐT Hải Dương : + Một chiếc cổng hình parabol có chiều cao 8m và khoảng cách giữa hai chân cổng là 12m như hình vẽ. Giả sử một chiếc xe tải có chiều ngang 4m và chiều cao là 7m đi vào vị trí chính giữa cổng. Hỏi xe tải có đi qua cổng được không? + Một công ty cần thuê xe để chở 120 người và 6,5 tấn hàng. Nơi thuê xe có hai loại xe A và B, trong đó loại xe A có 9 chiếc và loại xe B có 8 chiếc. Một chiếc xe loại A cho thuê với giá 4 triệu đồng, một chiếc xe loại B cho thuê với giá 3 triệu đồng. Biết rằng mỗi chiếc xe loại A có thể chở tối đa 20 người và 0,5 tấn hàng, mỗi chiếc xe loại B có thể chở tối đa 10 người và 2 tấn hàng. Hỏi phải thuê bao nhiêu xe mỗi loại để chi phí bỏ ra là thấp nhất? + Cho tam giác ABC có độ dài ba cạnh là BC a CA b AB c góc 0 A 60 và 2(cos 1) b c B a c. Tính số đo các góc B và C. Trong hệ trục tọa độ Oxy, cho tam giác ABC có C(3;4), đường thẳng đi qua trung điểm các cạnh CA và CB có phương trình 2 4 50 x y. Đường cao kẻ từ A của tam giác ABC có phương trình 3 0 x y. Tìm tọa độ điểm A và B. Cho hình chữ nhật ABCD (AB > AD). Tìm vị trí điểm M trên cạnh của hình chữ nhật sao cho biểu thức 2 2 T MA MC MB MD đạt giá trị nhỏ nhất.
Đề học sinh giỏi cấp tỉnh Toán 10 năm 2022 - 2023 sở GDĐT Thái Nguyên
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề thi chọn học sinh giỏi cấp tỉnh môn Toán 10 năm học 2022 – 2023 sở Giáo dục và Đào tạo UBND tỉnh Thái Nguyên; đề thi gồm 01 trang với 05 bài toán hình thức tự luận, thang điểm 20, thời gian làm bài 180 phút (không kể thời gian phát đề). Trích dẫn Đề học sinh giỏi cấp tỉnh Toán 10 năm 2022 – 2023 sở GD&ĐT Thái Nguyên : + Cho parabol (P): y = x2 và đường thẳng d: y = mx + 1 (với m là tham số). a. Chứng minh rằng với mọi giá trị thực của m, đường thẳng d luôn cắt parabol (P) tại hai điểm phân biệt. b. Gọi A, B là giao điểm của đường thẳng d và parabol (P); H, K lần lượt là hình chiếu vuông góc của A, B lên trục Ox. Tìm tất cả các giá trị thực của m để diện tích hình thang ABKH bằng 3 lần diện tích tam giác AOB, với O là gốc tọa độ. + Một cơ sở sản xuất làm hai loại sản phẩm A và B. Mỗi kg sản phẩm A cần 1,5 kg nguyên liệu và 2 giờ làm và có lợi nhuận là 20000 đồng; mỗi kg sản phẩm B cần 2 kg nguyên liệu và 4 giờ làm và có lợi nhuận 30000 đồng. Biết cơ sở sản xuất có 240 kg nguyên liệu và 400 giờ làm. Cơ sở sản xuất nên làm mỗi loại sản phẩm bao nhiêu kg để có mức lợi nhuận cao nhất? + Trong một gia đình, người có tuổi thấp nhất là 1 tuổi và người có tuổi cao nhất là 80 tuổi. Biết rằng trong gia đình đó, mỗi người có tuổi lớn hơn 1 thì tuổi của người đó hoặc bằng tổng số tuổi của hai người khác trong gia đình hoặc gấp đôi tuổi của một người khác trong gia đình. Hỏi gia đình đó có ít nhất bao nhiêu người? (Tuổi của mỗi người trong gia đình là số nguyên dương và khác nhau).
Đề học sinh giỏi Toán 10 năm 2022 - 2023 trường THPT Nguyễn Trãi - Thanh Hoá
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề thi chọn học sinh giỏi môn Toán 10 năm học 2022 – 2023 trường THPT Nguyễn Trãi, tỉnh Thanh Hoá; đề thi mã đề 111 gồm 06 trang, hình thức trắc nghiệm với 50 câu, thời gian làm bài 90 phút; đề thi có đáp án và hướng dẫn giải các câu vận dụng – vận dụng cao. Trích dẫn Đề học sinh giỏi Toán 10 năm 2022 – 2023 trường THPT Nguyễn Trãi – Thanh Hoá : + Trong mặt phẳng với hệ tọa độ Oxy, cho hình vuông ABCD biết phương trình cạnh AD x y 2 0, điểm B nằm trên đường thẳng d x y 2 2 0 và diện tích hình vuông ABCD bằng 8. Viết phương trình tổng quát của AB có dạng ax by 10 0 biết B có hoành độ dương. Khi đó giá trị của biểu thức a b bằng? + Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác ABC với đỉnh A 2 4, trọng tâm 2 2 3 G. Biết rằng đỉnh B nằm trên đường thẳng d có phương trình x y 2 0 và đỉnh C có hình chiếu vuông góc trên d là điểm H 2 4. Giả sử B a b khi đó T a b3 bằng? + Cho hình bình hành ABCD. Gọi M N lần lượt là hai điểm nằm trên hai cạnh AB và CD sao cho AB AM CD CN 3 2 và G là trọng tâm tam giác MNB. Phân tích các vectơ AG qua các véctơ AB và AC ta được kết quả AG mAB nAC hãy chọn đáp án?