Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề cuối kì 2 Toán 9 năm 2023 - 2024 phòng GDĐT Tân Phú - TP HCM

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra cuối học kì 2 môn Toán 9 năm học 2023 – 2024 phòng Giáo dục và Đào tạo quận Tân Phú, thành phố Hồ Chí Minh; đề thi gồm 01 trang, hình thức tự luận với 07 bài toán, thời gian làm bài 90 phút. Trích dẫn Đề cuối kì 2 Toán 9 năm 2023 – 2024 phòng GD&ĐT Tân Phú – TP HCM : + Nhà sách Khai Tâm khuyến mãi mỗi cây viết bi được giảm 20% so với giá niêm yết, còn mỗi quyển tập giảm 10% so với giá niêm yết. Bạn An vào nhà sách mua 20 quyển tập và 10 cây viết bi. Khi tính tiền, bạn An đưa 200000 đồng và được trả lại tiền thừa 2000 đồng. Biết rằng khi An nhìn vào hóa đơn, tổng số tiền phải trả khi chưa giảm giá là 225 000 đồng. Tính giá niêm yết của mỗi quyển tập và mỗi cây viết bi mà bạn An đã mua. + Trong hình vẽ bên, hình 1 và hình 2 là hai hình trụ có đường kính đáy lần lượt là 60cm và 20cm. Ở hình 1, hình trụ có chiều cao là 40 cm. Biết công thức tính diện tích xung quanh của hình trụ là Sxq = 2piRh, thể tích hình trụ là V = piR2h với R h lần lượt là bán kính đáy và chiều cao của hình trụ. a) Tính diện tích xung quanh của hình trụ ở hình 1 (làm tròn đến 01 chữ số thập phân). b) Biết thể tích hình trụ ở hình 1 gấp 4,5 lần thể tích hình trụ ở hình 2. Không dùng số liệu làm tròn ở câu a, tính tỉ số diện tích xung quanh của hình trụ ở hình 1 với diện tích xung quanh của hình trụ ở hình 2. + Ông Minh muốn gửi ngân hàng 100 triệu đồng trong thời gian 2 năm. Có hai ngân hàng đưa ra hai gói lãi suất như sau: Ngân hàng A: lãi suất 6%/năm (kỳ hạn 1 năm), lãi được nhập vào vốn tính tiếp cho năm tiếp theo. Ngân hàng B: lãi suất 5%/năm (kỳ hạn 1 năm), lãi được nhập vào vốn tính tiếp cho năm tiếp theo. Sau 2 năm khách hàng được nhận thêm 3 triệu đồng tiền mặt. Hỏi ông Minh nên chọn phương thức nào để nhận được số tiền lãi nhiều nhất sau hai năm?

Nguồn: toanmath.com

Đọc Sách

Đề thi học kì 2 Toán 9 năm 2021 - 2022 phòng GDĐT Gia Lâm - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi đánh giá chất lượng cuối học kì 2 môn Toán 9 năm học 2021 – 2022 phòng Giáo dục và Đào tạo huyện Gia Lâm, thành phố Hà Nội; đề thi gồm 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài kiểm tra là 120 phút (không kể thời gian phát đề). Trích dẫn đề thi học kì 2 Toán 9 năm 2021 – 2022 phòng GD&ĐT Gia Lâm – Hà Nội : + Quãng đường AB dài 120 km. Hai xe máy khởi hành cùng một lúc đi từ A đến B. Vận tốc của xe thứ nhất lớn hơn vận tốc của xe thứ hai là 10 km/h nên xe máy thứ nhất đến B trước xe thứ hai 1 giờ. Tính vận tốc của mỗi xe. + Tính thể tích hộp sữa hình trụ có chiều cao 17cm và đường kính đáy 12cm. + Cho đường tròn (O) có hai đường kính AB và CD vuông góc với nhau. Gọi M là một điểm trên cung nhỏ BC, dây AM cắt CD, CB lần lượt tại P và Q. Gọi N là giao điểm của DM và AB. a) Chứng minh tứ giác BOPM nội tiếp; b) Chứng minh AP.AM = 2R2; c) Chứng minh QN // CD và NQ là tia phân giác của góc CNM; d) Gọi E là giao điểm của QN và BD, F là điểm đối xứng với Q qua M. Chứng minh rằng khi M di chuyển trên cung nhỏ BC thì đường tròn ngoại tiếp tam giác BEF đi qua hai điểm cố định.
Đề thi cuối kì 2 Toán 9 năm 2021 - 2022 trường THCS Hạ Đình - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi đánh giá chất lượng cuối học kì 2 môn Toán 9 năm học 2021 – 2022 trường THCS Hạ Đình, thành phố Hà Nội. Trích dẫn đề thi cuối kì 2 Toán 9 năm 2021 – 2022 trường THCS Hạ Đình – Hà Nội : + Giải bài toán bằng cách lập phương trình hoặc hệ phương trình: Một ca nô tuần tra đi xuôi dòng từ A đến B hết 1 giờ 20 phút và ngược dòng từ B về A hết 2 giờ. Tính vận tốc riêng của ca nô, biết vận tốc dòng nước là 3 km/h. + Một hộp thực phẩm có dạng hình trụ cao 5cm. Biết diện tích đáy là 12,56cm. Tính thể tích của hộp thực phẩm đó. + Cho đường tròn (O) đường kính AB. Gọi H là điểm nằm giữa O và B. Kẻ dây CD vuông góc với AB tại H. Trên cung nhỏ AC lấy điểm E bất kỳ (E khác A và C). Kẻ CK vuông góc với AE tại K. Đường thẳng DE cắt CK tại F. 1) Chứng minh tứ giác AHCK là tứ giác nội tiếp 2) Chứng minh KH song song với ED và tam giác ACF là tam giác cân 3) Tìm vị trí của điểm E để diện tích tam giác ADF lớn nhất.
Đề thi học kì 2 Toán 9 năm 2021 - 2022 trường THCS Phương Mai - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi kiểm tra chất lượng cuối học kì 2 môn Toán 9 năm học 2021 – 2022 trường THCS Phương Mai, quận Đống Đa, thành phố Hà Nội. Trích dẫn đề thi học kì 2 Toán 9 năm 2021 – 2022 trường THCS Phương Mai – Hà Nội : + Giải bài toán bằng cách lập hệ phương trình hoặc phương trình: Tình cảm gia đình có sức mạnh phi thường. Bạn Vì Quyết Chiến – Cậu bé 13 tuổi quá thương nhớ em trai của mình đã vượt qua một quãng đường dài 180km từ Sơn La đến bệnh viện Nhi Trung ương Hà Nội để thăm em. Sau khi đi bằng xe đạp 7 giờ, bạn ấy được lên xe khách và đi tiếp 1 giờ 30 phút nữa thì đến nơi. Biết vận tốc của xe khách lớn hơn vận tốc của xe đạp là 35km/h. Tính vận tốc xe đạp của bạn Chiến. + Một hình trụ có bán kính đường tròn đáy là 6cm, chiều cao 9cm. Hãy tính diện tích xung quanh và thể tích của hình trụ (kết quả làm tròn đến hai chữ số thập phân; pi = 3,14). + Cho tam giác ABC có ba góc nhọn nội tiếp đường tròn tâm O bán kính R và AH là đường cao của tam giác ABC. Gọi M, N thứ tự là hình chiếu của H trên AB, AC. Chứng minh rằng: 1. Chứng minh AMHN là tứ giác nội tiếp. 2. Chứng minh AB.AM = AC.AN. 3. Chứng minh M, O, N thẳng hàng nếu AH = R2.
Đề thi HK2 Toán 9 năm 2021 - 2022 trường THCSTHPT Lê Quý Đôn - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi kiểm tra chất lượng cuối học kì 2 môn Toán 9 năm học 2021 – 2022 trường THCS&THPT Lê Quý Đôn, thành phố Hà Nội. Trích dẫn đề thi HK2 Toán 9 năm 2021 – 2022 trường THCS&THPT Lê Quý Đôn – Hà Nội : + Giải bài toán bằng cách lập hệ phương trình hoặc phương trình: Trong tháng đầu hai tổ sản xuất được 800 chi tiết máy. Sang tháng thứ 2 tổ I vượt mức 15%, tổ II vượt mức 20%. Do đó cuối tháng, cả hai tổ sản xuất được 945 chi tiết máy. Trong tháng đầu, mỗi tổ sản xuất được bao nhiêu chi tiết máy? + Cho phương trình x2 – (2m + 3)x + m2 + 3m + 2 = 0 (1) (m là tham số) a) CMR: phương trình (1) luôn có hai nghiệm phân biệt với mọi m. b) Gọi x1 và x2 là hai nghiệm của phương trình (1). Tìm m để x12 + x22 = 1. + Cho hình chữ nhật ABCD nội tiếp đường tròn (O). Tiếp tuyến tại C với đường tròn cắt AB, AD kéo dài lần lượt tại E, F. Tiếp tuyến tại D với (O) cắt EF tại I a) Chứng minh: tứ giác OCID nội tiếp. b) Chứng minh: AB.AE = AD. AF c) Chứng minh: I là trung điểm của CF d) Tính diện tích phần hình tròn giới hạn bởi dây AD và cung nhỏ AD biết AB = 6 và AD = 63.