Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Phân dạng và bài tập phân thức đại số Toán 8 Kết Nối Tri Thức Với Cuộc Sống

Tài liệu gồm 101 trang, được tổng hợp và biên soạn bởi thầy giáo Nguyễn Bỉnh Khôi, phân dạng và tuyển chọn các bài tập chuyên đề phân thức đại số trong chương trình môn Toán 8 bộ sách Kết Nối Tri Thức Với Cuộc Sống, có đáp án và lời giải chi tiết. MỤC LỤC : Chương 6 . PHÂN THỨC ĐẠI SỐ 1. Bài 21 . PHÂN THỨC ĐẠI SỐ 1. A Trọng tâm kiến thức 1. 1. Phân thức đại số 1. 2. Hai phân thức bằng nhau 1. 3. Điều kiện xác định và giá trị của phân thức tại một giá trị đã cho của biến 1. B Các dạng bài tập 1. + Dạng 1. Nhận biết phân thức, xác định tử thức và mẫu thức 1. + Dạng 2. Điều kiện xác định và giá trị của phân thức tại một giá trị đã cho của biến 3. + Dạng 3. Hai phân thức bằng nhau 4. + Dạng 4. Tìm giá trị nhỏ nhất, giá trị lớn nhất của phân thức 6. + Dạng 5. Vận dụng 7. C Bài tập vận dụng 8. Bài 22 . PHÂN THỨC ĐẠI SỐ 14. A Trọng tâm kiến thức 14. 1. Tính chất cơ bản của phân thức 14. 2. Rút gọn phân thức 14. 3. Quy đồng mẫu nhiều phân thức 14. B Các dạng bài tập 15. + Dạng 1. Rút gọn phân thức 15. + Dạng 2. Chứng minh đẳng thức 16. + Dạng 3. Tính giá trị biểu thức 17. + Dạng 4. Chứng minh giá trị biểu thức không phụ thuộc vào biến 18. + Dạng 5. Tìm x thỏa mãn đẳng thức cho trước 19. + Dạng 6. Quy đồng mẫu thức 20. + Dạng 7. Vận dụng 21. C Bài tập vận dụng 23. Bài 23 . PHÉP CỘNG VÀ PHÉP TRỪ PHÂN THỨC ĐẠI SỐ 28. A Trọng tâm kiến thức 28. 1. Cộng hai phân thức cùng mẫu thức 28. 2. Cộng hai phân thức khác mẫu 28. 3. Trừ hai phân thức 28. 4. Cộng, trừ nhiều phân thức đại số 28. B Các dạng bài tập 29. + Dạng 1. Cộng, trừ các phân thức cùng mẫu thức 29. + Dạng 2. Cộng, trừ các phân thức không cùng mẫu thức 31. + Dạng 3. Tìm x thõa mãn đẳng thức cho trước 33. + Dạng 4. Rút gọn và tính giá trị biểu thức 33. + Dạng 5. Chứng minh giá trị biểu thức không phụ thuộc vào biến. Chứng minh đẳng thức 36. + Dạng 6. Vận dụng 38. C Bài tập vận dụng 39. Bài 24 . PHÉP NHÂN VÀ PHÉP CHIA PHÂN THỨC ĐẠI SỐ 51. A Trọng tâm kiến thức 51. 1. Phép nhân các phân thức đại số 51. 2. Phân thức nghịch đảo 51. 3. Phép chia 51. B Các dạng bài tập 51. + Dạng 1. Thực hiện phép nhân, phép chia các phân thức 51. + Dạng 2. Rút gọn biểu thức 52. + Dạng 3. Tìm x thỏa mãn đẳng thức cho trước 54. + Dạng 4. Chứng minh giá trị biểu thức không phụ thuộc vào giá trị của biến 54. + Dạng 5. Vận dụng 55. C Bài tập tự luyện 57. LUYỆN TẬP CHUNG 63. A Trọng tâm kiến thức 63. B Các dạng bài tập 63. + Dạng 1. Tìm điều kiện của biến để phân thức xác định 63. + Dạng 2. Tìm giá trị của x để phân thức bằng 0 63. + Dạng 3. Rút gọn biểu thức 64. + Dạng 4. Vận dụng 65. C Bài tập vận dụng 66. ÔN TẬP CHƯƠNG VI 72. A Bài tập rèn luyện 72. B Bài tập bổ sung 78.

Nguồn: toanmath.com

Đọc Sách

Chuyên đề trường hợp đồng dạng thứ hai
Tài liệu gồm 11 trang, tóm tắt lý thuyết trọng tâm cần đạt, phân dạng và hướng dẫn giải các dạng toán, tuyển chọn các bài tập từ cơ bản đến nâng cao chuyên đề trường hợp đồng dạng thứ hai, có đáp án và lời giải chi tiết, hỗ trợ học sinh trong quá trình học tập chương trình Hình học 8 chương 3: Tam giác đồng dạng. I. TÓM TẮT LÝ THUYẾT II. BÀI TẬP VÀ CÁC DẠNG TOÁN Dạng 1. Chứng minh hai tam giác đồng dạng. Phương pháp giải: + Bước 1: Xét hai tam giác, chọn ra hai góc bằng nhau và chứng minh (nếu cần). + Bước 2: Lập tỉ số các cạnh tạo nên mỗi góc đó, rồi chứng minh chúng bằng nhau. + Bước 3: Từ đó, chứng minh hai tam giác đồng dạng. Dạng 2. Sử dụng các trường hợp đồng dạng thứ hai để tính độ dài các cạnh hoặc chứng minh các góc bằng nhau. Phương pháp giải: Sử dụng trường hợp đồng dạng thứ hai (nếu cần) để chứng minh hai tam giác đồng dạng, từ đó suy ra các cặp góc tương ứng bằng nhau hoặc cặp cạnh tương ứng còn lại bằng nhau.
Chuyên đề trường hợp đồng dạng thứ nhất
Tài liệu gồm 09 trang, tóm tắt lý thuyết trọng tâm cần đạt, phân dạng và hướng dẫn giải các dạng toán, tuyển chọn các bài tập từ cơ bản đến nâng cao chuyên đề trường hợp đồng dạng thứ nhất, có đáp án và lời giải chi tiết, hỗ trợ học sinh trong quá trình học tập chương trình Hình học 8 chương 3: Tam giác đồng dạng. I. TÓM TẮT LÝ THUYẾT II. BÀI TẬP VÀ CÁC DẠNG TOÁN Dạng 1. Chứng minh hai tam giác đồng dạng. Phương pháp giải: Để chứng minh hai tam giác đồng dạng, ta lập tỉ số các cạnh tương ứng của hai tam giác và chứng minh chúng bằng nhau, từ đó ta được điều phải chứng minh. Dạng 2. Sử dụng trường hợp đồng dạng thứ nhất để tính độ dài các cạnh hoặc chứng minh các góc bằng nhau. Phương pháp giải: Sử dụng trường hợp đồng dạng thứ nhất (nếu cần) để chứng minh hai tam giác đồng dạng, từ đó suy ra các cặp góc tương ứng bằng nhau.
Chuyên đề khái niệm hai tam giác đồng dạng
Tài liệu gồm 11 trang, tóm tắt lý thuyết trọng tâm cần đạt, phân dạng và hướng dẫn giải các dạng toán, tuyển chọn các bài tập từ cơ bản đến nâng cao chuyên đề khái niệm hai tam giác đồng dạng, có đáp án và lời giải chi tiết, hỗ trợ học sinh trong quá trình học tập chương trình Hình học 8 chương 3: Tam giác đồng dạng. I. KIẾN THỨC CƠ BẢN II. DẠNG BÀI TẬP CƠ BẢN Dạng 1. Vẽ tam giác đồng dạng với tam giác cho trước. Chứng minh hai tam giác đồng dạng. 1. Vẽ tam giác đồng dạng với tam giác cho trước. + Xác định tỉ số đồng dạng. + Kẻ đường thẳng song song với một cạnh của tam giác. 2. Chứng minh hai tam giác đồng dạng. + Sử dụng định nghĩa hoặc định lí nhận biết hai tam giác đồng dạng. Dạng 2: Tính độ dài cạnh, tỉ số đồng dạng thông qua các tam giác đồng dạng. Dạng 3: Chứng minh đẳng thức cạnh thông qua các tam giác đồng dạng.
Chuyên đề tính chất đường phân giác của tam giác
Tài liệu gồm 11 trang, tóm tắt lý thuyết trọng tâm cần đạt, phân dạng và hướng dẫn giải các dạng toán, tuyển chọn các bài tập từ cơ bản đến nâng cao chuyên đề tính chất đường phân giác của tam giác, có đáp án và lời giải chi tiết, hỗ trợ học sinh trong quá trình học tập chương trình Hình học 8 chương 3: Tam giác đồng dạng. I. KIẾN THỨC CƠ BẢN 1. Định lý: Trong tam giác, đường phân giác của một góc chia cạnh đối diện thành hai đoạn thẳng tỉ lệ với hai cạnh kề hai đoạn ấy. 2. Chú ý: + Định lý vẫn đúng với đối với đường phân giác góc ngoài của tam giác. + Các định lý trên có định lý đảo. II. BÀI TẬP MINH HỌA A. DẠNG BÀI CƠ BẢN DẠNG 1. Tính độ dài đoạn thẳng. + Áp dụng tính chất đường phân giác, lập tỉ lệ thức giữa các đoạn thẳng và sử dụng kĩ thuật đại số hóa hình học. + Áp dụng định lí Py-ta-go. DẠNG 2.Tính tỉ số độ dài, tỉ số diện tích hai tam giác. + Áp dụng tính chất đường phân giác, lập tỉ lệ thức giữa các đoạn thẳng. + Sử dụng kĩ thuật đại số hóa hình học. Công thức và kết quả thu được từ công thức tính diện tích tam giác. B. DẠNG BÀI NÂNG CAO