Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Phân dạng và bài tập phân thức đại số Toán 8 Kết Nối Tri Thức Với Cuộc Sống

Tài liệu gồm 101 trang, được tổng hợp và biên soạn bởi thầy giáo Nguyễn Bỉnh Khôi, phân dạng và tuyển chọn các bài tập chuyên đề phân thức đại số trong chương trình môn Toán 8 bộ sách Kết Nối Tri Thức Với Cuộc Sống, có đáp án và lời giải chi tiết. MỤC LỤC : Chương 6 . PHÂN THỨC ĐẠI SỐ 1. Bài 21 . PHÂN THỨC ĐẠI SỐ 1. A Trọng tâm kiến thức 1. 1. Phân thức đại số 1. 2. Hai phân thức bằng nhau 1. 3. Điều kiện xác định và giá trị của phân thức tại một giá trị đã cho của biến 1. B Các dạng bài tập 1. + Dạng 1. Nhận biết phân thức, xác định tử thức và mẫu thức 1. + Dạng 2. Điều kiện xác định và giá trị của phân thức tại một giá trị đã cho của biến 3. + Dạng 3. Hai phân thức bằng nhau 4. + Dạng 4. Tìm giá trị nhỏ nhất, giá trị lớn nhất của phân thức 6. + Dạng 5. Vận dụng 7. C Bài tập vận dụng 8. Bài 22 . PHÂN THỨC ĐẠI SỐ 14. A Trọng tâm kiến thức 14. 1. Tính chất cơ bản của phân thức 14. 2. Rút gọn phân thức 14. 3. Quy đồng mẫu nhiều phân thức 14. B Các dạng bài tập 15. + Dạng 1. Rút gọn phân thức 15. + Dạng 2. Chứng minh đẳng thức 16. + Dạng 3. Tính giá trị biểu thức 17. + Dạng 4. Chứng minh giá trị biểu thức không phụ thuộc vào biến 18. + Dạng 5. Tìm x thỏa mãn đẳng thức cho trước 19. + Dạng 6. Quy đồng mẫu thức 20. + Dạng 7. Vận dụng 21. C Bài tập vận dụng 23. Bài 23 . PHÉP CỘNG VÀ PHÉP TRỪ PHÂN THỨC ĐẠI SỐ 28. A Trọng tâm kiến thức 28. 1. Cộng hai phân thức cùng mẫu thức 28. 2. Cộng hai phân thức khác mẫu 28. 3. Trừ hai phân thức 28. 4. Cộng, trừ nhiều phân thức đại số 28. B Các dạng bài tập 29. + Dạng 1. Cộng, trừ các phân thức cùng mẫu thức 29. + Dạng 2. Cộng, trừ các phân thức không cùng mẫu thức 31. + Dạng 3. Tìm x thõa mãn đẳng thức cho trước 33. + Dạng 4. Rút gọn và tính giá trị biểu thức 33. + Dạng 5. Chứng minh giá trị biểu thức không phụ thuộc vào biến. Chứng minh đẳng thức 36. + Dạng 6. Vận dụng 38. C Bài tập vận dụng 39. Bài 24 . PHÉP NHÂN VÀ PHÉP CHIA PHÂN THỨC ĐẠI SỐ 51. A Trọng tâm kiến thức 51. 1. Phép nhân các phân thức đại số 51. 2. Phân thức nghịch đảo 51. 3. Phép chia 51. B Các dạng bài tập 51. + Dạng 1. Thực hiện phép nhân, phép chia các phân thức 51. + Dạng 2. Rút gọn biểu thức 52. + Dạng 3. Tìm x thỏa mãn đẳng thức cho trước 54. + Dạng 4. Chứng minh giá trị biểu thức không phụ thuộc vào giá trị của biến 54. + Dạng 5. Vận dụng 55. C Bài tập tự luyện 57. LUYỆN TẬP CHUNG 63. A Trọng tâm kiến thức 63. B Các dạng bài tập 63. + Dạng 1. Tìm điều kiện của biến để phân thức xác định 63. + Dạng 2. Tìm giá trị của x để phân thức bằng 0 63. + Dạng 3. Rút gọn biểu thức 64. + Dạng 4. Vận dụng 65. C Bài tập vận dụng 66. ÔN TẬP CHƯƠNG VI 72. A Bài tập rèn luyện 72. B Bài tập bổ sung 78.

Nguồn: toanmath.com

Đọc Sách

Chuyên đề đa giác, đa giác đều
Tài liệu gồm 11 trang, tóm tắt lý thuyết trọng tâm cần đạt, phân dạng và hướng dẫn giải các dạng toán, tuyển chọn các bài tập từ cơ bản đến nâng cao chuyên đề đa giác, đa giác đều, có đáp án và lời giải chi tiết, hỗ trợ học sinh trong quá trình học tập chương trình Hình học 8 chương 2: Đa giác, diện tích đa giác. I. TÓM TẮT LÝ THUYẾT 1. Đa giác: Đa giác A1A2…An là hình gồm n đoạn thẳng A1A2; A2A3;…AnA1 trong đó bất kì hai đoạn thẳng nào có một điểm chung cũng không cùng nằm trên một đường thẳng. 2. Đa giác lồi: Đa giác lồi là đa giác luôn nằm trong một nửa mặt phẳng có bờ là đường thẳng chứa bất kì cạnh nào của đa giác. 3. Các khái niệm khác. + Một đa giác có n đỉnh được gọi n-giác. + Đường chéo của đa giác là các đoạn thẳng nối hai đỉnh không kề nhau của đa giác đó. + Đa giác đều là đa giác có tất cả các cạnh bằng nhau và tất cả các góc bằng nhau. II. BÀI TẬP VÀ CÁC DẠNG TOÁN A. CÁC DẠNG BÀI MINH HỌA + Dạng 1. Nhận biết đa giác. Phương pháp giải: Sử dụng định nghĩa đa giác trong phần Tóm tắt lý thuyết ở trên. + Dạng 2: Tính chất về góc của đa giác. Phương pháp giải: Tổng các góc trong của đa giác n cạnh (n > 2) là (n – 2).180°. + Dạng 3: Tính chất về đường chéo của đa giác. Phương pháp giải: Xét số đường chéo xuất phát từ một đỉnh. + Dạng 4: Đa giác đều. Phương pháp giải: Sử dụng định nghĩa đa giác đều, công thức tính góc của đa giác đều. B. PHIẾU BÀI TỰ LUYỆN
Chuyên đề hình vuông
Tài liệu gồm 17 trang, tóm tắt lý thuyết trọng tâm cần đạt, phân dạng và hướng dẫn giải các dạng toán, tuyển chọn các bài tập từ cơ bản đến nâng cao chuyên đề hình vuông, có đáp án và lời giải chi tiết, hỗ trợ học sinh trong quá trình học tập chương trình Hình học 8 chương 1: Tứ giác. I. KIẾN THỨC CẦN NHỚ II. CÁC DẠNG BÀI TẬP A. CÁC DẠNG BÀI TẬP MINH HỌA Dạng 1. Nhận dạng hình vuông. Phương pháp giải: Sử dụng một trong hai cách sau: + Cách 1: Chứng minh tứ giác là hình chữ nhật có thêm dấu hiệu hai cạnh kề bằng nhau hoặc hai đường chéo vuông góc hoặc một đường chéo là đường phân giác của một góc. + Cách 2: Chứng minh tứ giác là hình thoi có thêm dấu hiệu có một góc vuông hoặc hai đường chéo bằng nhau. Dạng 2. Sử dụng định nghĩa, tính chất của hình vuông để chứng minh các quan hệ bằng nhau, song song, vuông góc, thẳng hàng. Phương pháp giải: Sử dụng định nghĩa, tính chất và bổ đề về hình vuông. Dạng 3. Tìm điều kiện để một hình trở thành hình vuông. Phương pháp giải: + Sử dụng các dấu hiệu nhận biết hình vuông. + Nếu bài toán chỉ yêu cầu tìm vị trí của một điểm nào đó để một hình trở thành hình vuông ta làm như sau: giả sử hình đó là hình vuông rồi dựa vào các tính chất của hình vuông để chỉ ra vị trí cần tìm. B. PHIẾU BÀI TẬP RÈN LUYỆN
Chuyên đề hình thoi
Tài liệu gồm 32 trang, tóm tắt lý thuyết trọng tâm cần đạt, phân dạng và hướng dẫn giải các dạng toán, tuyển chọn các bài tập từ cơ bản đến nâng cao chuyên đề hình thoi, có đáp án và lời giải chi tiết, hỗ trợ học sinh trong quá trình học tập chương trình Hình học 8 chương 1: Tứ giác. I. TÓM TẮT LÝ THUYẾT II. BÀI TẬP VÀ CÁC DẠNG TOÁN A. CÁC DẠNG BÀI MINH HỌA CB – NC Dạng 1. Chứng minh tứ giác là hình thoi. Phương pháp: Sử dụng các dấu hiệu nhận biết. + Tứ giác có bốn cạnh bằng nhau là hình thoi. + Hình bình hành có hai cạnh kề bằng nhau là hình thoi. + Hình bình hành có hai đường chéo vuông góc với nhau là hình thoi. + Hình bình hành có một đường chéo là đường phân giác của một góc là hình thoi. Dạng 2. Vận dụng tính chất của hình thoi để chứng minh các tính chất hình học. Phương pháp: Sử dụng tính chất và định nghĩa của hình thoi để giải toán. + Hình thoi là tứ giác có bốn cạnh bằng nhau. + Hình thoi có tất cả các tính chất của hình bình hành: Các cạnh đối song song và bằng nhau, các góc đối bằng nhau. Hai đường chéo cắt nhau tại trung điểm của mỗi đường. + Ngoài ra, trong hình thoi có: Hai đường chéo vuông góc với nhau. Hai đường chéo là các đường phân giác của các góc của hình thoi. Dạng 3. Tìm điều kiện để tứ giác là hình thoi. Phương pháp giải: Vận dụng định nghĩa, các tính chất và dấu hiệu nhận biết của hình thoi. Dạng 4. Tổng hợp. B. PHIẾU BÀI NÂNG CAO PHÁT TRIỂN TƯ DUY Dạng 1: Nhận biết tứ giác là hình thoi. Dạng 2. Sử dụng tính chất hình thoi để tính toán, chứng minh các đoạn thẳng bằng nhau, các góc bằng nhau, các đường thẳng vuông góc. Dạng 3. Tìm điều kiện để tứ giác là hình thoi. C. PHIẾU BÀI TỰ LUYỆN CB – NC Dạng 1: Chứng minh một tứ giác là hình thoi. Dạng 2: Vận dụng kiến thức hình thoi để chứng minh và giải toán.
Chuyên đề đường thẳng song song với một đường thẳng cho trước
Tài liệu gồm 09 trang, tóm tắt lý thuyết trọng tâm cần đạt, phân dạng và hướng dẫn giải các dạng toán, tuyển chọn các bài tập từ cơ bản đến nâng cao chuyên đề đường thẳng song song với một đường thẳng cho trước, có đáp án và lời giải chi tiết, hỗ trợ học sinh trong quá trình học tập chương trình Hình học 8 chương 1: Tứ giác. I. TÓM TẮT LÝ THUYẾT + Định nghĩa: Khoảng cách giữa hai đường thẳng song song là khoảng cách từ một điểm tùy ý trên đường thẳng này đến đường thẳng kia. + Tính chất: Các điểm cách đường thẳng b một khoảng bằng h nằm trên hai đường thẳng song song với b và cách b một khoảng bằng h. + Nhận xét: Tập hợp các điểm cách một đường thẳng cố định một khoảng bằng h không đổi là hai đường thẳng song song với đường thẳng đó và cách đường thẳng đó một khoảng bằng h. + Ghi chú: – Tập hợp các điểm cách điểm O cố định một khoảng bằng r không đổi là đường tròn (O, r). – Tập hợp các điểm cách đều hai đầu mút của một đoạn thẳng cố định là đường trung trực của đoạn thẳng đó. – Tập hợp các điểm nằm trong góc và cách đều hai cạnh của góc là tia phân giác của góc đó. II. BÀI TẬP VÀ CÁC DẠNG TOÁN A. CÁC DẠNG BÀI CB – NC MINH HỌA + Dạng 1. Phát biểu tập hợp điểm (không chứng minh). Phương pháp giải: Vận dụng các tính chất để chi ra hình dạng của tập hợp các điểm cùng thỏa mãn một điều kiện nào đó. + Dạng 2. Tìm quỹ tích (tập hợp các điểm). Phương pháp giải: Vận dụng các nhận xét về tập hợp điểm. + Dạng 3.Tổng hợp. B. BÀI TẬP RÈN LUYỆN