Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Các phương pháp tìm Nguyên hàm - Nguyễn Đình Sỹ

Tài liệu gồm 34 trang hướng dẫn các phương pháp tìm nguyên hàm của hàm số, tài liệu do thầy Nguyễn Đình Sĩ biên soạn. Để tìm họ nguyên hàm của một hàm số y = f(x), cũng có nghĩa là ta đi tính một tích phân bất định: I = ∫f(x)dx, ta có ba phương pháp: + Phương pháp phân tích . + Phương pháp đổi biến số . + Phương pháp tích phân từng phần Do đó điều quan trọng là f(x) có dạng như thế nào để ta nghiên cứu có thể phân tích chúng sao cho có thể sử dụng bảng nguyên hàm cơ bản để tìm được nguyên hàm của chúng hoặc sử dụng hai phương pháp còn lại. Sau đây là một số gợi ý giúp các em có thể nhận biết dạng của f(x) mà có phương pháp phân tích cụ thể, từ đó tìm được nguyên hàm của chúng. [ads] PHƯƠNG PHÁP TÌM NGUYÊN HÀM BẰNG CÁCH PHÂN TÍCH I. Trường hợp f(x) là một hàm đa thức II. Trường hợp f(x) là phân thức hữu tỷ: f(x) = P(x)/Q(x) Nếu bậc của P(x) cao hơn hoặc bằng bậc của Q(x), thì bằng phép chia đa thức ta lấy P(x) chia cho Q(x) được một đa thức A(x) và một số dư R(x) mà bậc của R(x) thấp hơn bậc của Q(x). Như vậy tích phân của A(x) ta tính được ngay (như đã trình bày ở trên). Do vậy ta chỉ nghiên cứu cách tìm nguyên hàm của f(x) trong trường hợp bậc tử thấp hơn bậc của mẫu, nghĩa là f(x) có dạng: f(x) = R(x). + Trường hợp mẫu số không có nghiệm thực có nghiệm thực (Tức là mẫu số vô nghiệm) + Trường hợp mẫu số có nhiều nghiệm thực đơn + Trường hợp mẫu số có cả trường hợp không có nghiệm thực và trường hợp có nhiều nghiệm thực đơn III. Nguyễn hàm các hàm số lượng giác Để xác định nguyên hàm các hàm số lượng giác ta cần linh hoạt lựa chọn một trong các phương pháp cơ bản sau: 1. Sử dụng dạng nguyên hàm cơ bản 2. Sử dụng phương pháp biến đổi lượng giác đưa về các nguyên hàm cơ bản 3. Phương pháp đổi biến 4. Phương pháp tích phân từng phần TÌM NGUYÊN HÀM BẰNG PHƯƠNG PHÁP ĐỔI BIẾN SỐ TÌM NGUYÊN HÀM BẰNG PHƯƠNG PHÁP TÍCH PHÂN TỪNG PHẦN

Nguồn: toanmath.com

Đọc Sách

Chủ đề nguyên hàm, tích phân và ứng dụng ôn thi tốt nghiệp THPT môn Toán
Tài liệu gồm 398 trang, được biên soạn bởi thầy giáo Phan Nhật Linh, tổng hợp lý thuyết trọng tâm, ví dụ minh họa và các dạng bài tập chủ đề nguyên hàm, tích phân và ứng dụng ôn thi tốt nghiệp THPT môn Toán, có đáp án và lời giải chi tiết. DẠNG 1 Các phương pháp tính nguyên hàm cơ bản. DẠNG 2 Các phương pháp tính tích phân cơ bản. DẠNG 3 Tích phân cho bởi nhiều hàm. DẠNG 4 Kết hợp đổi biến, từng phần tính tích phân. DẠNG 5 Tích phân hàm ẩn phần 1. DẠNG 6 Tích phân hàm ẩn phần 2. DẠNG 7 Tích phân đặc biệt kết hợp với tích phân hàm ẩn. DẠNG 8 Tính tích phân bằng phương pháp vi phân. DẠNG 9 Tính tích phân dựa vào đồ thị. DẠNG 10.1 Ứng dụng tích phân tích diện tích hình phẳng. DẠNG 10.2 Ứng dụng tích phân tính diện tích hình phẳng. DẠNG 11 Toán thực tế liên quan đến diện tích hình phẳng. DẠNG 12 Ứng dụng tích phân vào bài toán chuyển động. DẠNG 13 Tích phân trong đề thi của Bộ Giáo dục và Đào tạo.
Một số bài toán chọn lọc về tích phân
Tài liệu gồm 16 trang, trình bày lý thuyết trọng tâm, các dạng toán trọng tâm kèm phương pháp giải và bài tập trắc nghiệm tự luyện chuyên đề một số bài toán chọn lọc về tích phân, có đáp án và lời giải chi tiết; hỗ trợ học sinh lớp 12 trong quá trình học tập chương trình Toán 12 phần Giải tích chương 3.
Một số ứng dụng khác của tích phân
Tài liệu gồm 25 trang, trình bày lý thuyết trọng tâm, các dạng toán trọng tâm kèm phương pháp giải và bài tập trắc nghiệm tự luyện chuyên đề một số ứng dụng khác của tích phân, có đáp án và lời giải chi tiết; hỗ trợ học sinh lớp 12 trong quá trình học tập chương trình Toán 12 phần Giải tích chương 3. Dạng 1: Bài toán liên quan đến quãng đường, vận tốc, gia tốc và thời gian. Dạng 2: So sánh các giá trị của hàm số. BÀI TẬP TỰ LUYỆN. LỜI GIẢI CHI TIẾT.
Toàn tập nguyên hàm, tích phân vận dụng cao (chuyên đề tính toán)
Tài liệu gồm 114 trang, được biên soạn bởi thầy giáo Lương Tuấn Đức (Giang Sơn), tuyển chọn hệ thống bài tập trắc nghiệm chuyên đề nguyên hàm và tích phân vận dụng cao (chuyên đề tính toán) lớp 12 THPT, giúp học sinh rèn luyện khi học chương trình Toán 12 phần Giải tích chương 3: Nguyên hàm, tích phân và ứng dụng. A: TỪNG PHẦN, VI PHÂN (A1 ĐẾN A8). B: NGUYÊN HÀM NÂNG CAO (B1 ĐẾN B8). C: THAM SỐ, GIÁ TRỊ TUYỆT ĐỐI, MIN MAX, HÀM SỐ CHẴN LẺ (C1 ĐẾN C8). D: HÀM ẨN TỔNG HỢP (D1 ĐẾN D8). E: TÍCH PHÂN HAI VẾ, ĐỔI BIẾN, XÁC ĐỊNH HÀM (E1 ĐẾN E8). F: HẰNG ĐẲNG THỨC, BẤT ĐẲNG THỨC TÍCH PHÂN (F1 ĐẾN F8). G: TÍCH PHÂN THUẦN NÂNG CAO (G1 ĐẾN G8).