Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi học kì 1 (HK1) lớp 10 môn Toán chuyên năm học 2017 2018 trường THPT chuyên Hà Nội Amsterdam

Nội dung Đề thi học kì 1 (HK1) lớp 10 môn Toán chuyên năm học 2017 2018 trường THPT chuyên Hà Nội Amsterdam Bản PDF Đề thi học kỳ 1 Toán lớp 10 chuyên năm học 2017 – 2018 trường THPT chuyên Hà Nội – Amsterdam gồm 6 bài toán tự luận, thời gian làm bài 120 phút. Trích dẫn đề thi học kỳ 1 Toán lớp 10 : + Cho tam giác ABC có góc A = 60 độ, AC = b, AB = c. Gọi M, N là các điểm thỏa mãn các biểu thức vectơ MA – 2NC = 6NA – 3MB, MA + 3MB = -(NC + 3NA). a. Xác định vị trí của các điểm M, N b. Tìm tập hợp điểm P thỏa mãn |PA + PB + PC| = |PM + PN| c. Tìm điều kiện của b, c để BN ⊥ CM [ads] + Có bao nhiêu cách sắp xếp 20 viên bi giống nhau vào 3 hộp sao cho hộp nào cũng có bi? Nếu 20 viên bi đó đôi một khác nhau thì có bao nhiêu cách sắp xếp? + Cho 2018 số nguyên dương không lớn hơn 2018 có tổng bằng 4036. Hỏi từ các số này có thể chọn được ít nhất một bộ các số có tổng bằng 2018 hay không?

Nguồn: sytu.vn

Đọc Sách

Đề thi học kì 1 Toán 10 năm 2019 - 2020 trường THPT Bùi Thị Xuân - TP HCM
Kỳ thi cuối học kì 1 môn Toán 10 là kỳ thi rất quan trọng đối với các em học sinh lớp 10, điểm số của kỳ thi này tác động lớn đến điểm trung bình môn Toán 10 nói riêng và xếp loại học lực nói chung. Để giúp các em đạt được điểm số cao trong kì thi HK1 Toán 10 sắp tới, chọn lọc và chia sẻ đến các em bản PDF đề thi + đáp án/đáp số + lời giải chi tiết đề thi học kì 1 Toán 10 năm học 2019 – 2020 trường THPT Bùi Thị Xuân, thành phố Hồ Chí Minh. Trích dẫn đề thi học kì 1 Toán 10 năm 2019 – 2020 trường THPT Bùi Thị Xuân – TP HCM : + Giải và biện luận phương trình sau theo tham số m: x(3m – 2) – m = m2.(x – 1). + Cho tam giác ABC, biết AB = 6(cm), AC = 8 (cm), BC = 12 (cm). a) Tính độ dài trung tuyến AI và độ dài đường cao AH của tam giác ABC. b) Trên cạnh AB lấy điểm M sao cho AM = 2(cm). Gọi N là trung điểm của cạnh AC. Tính AM.AN. + Trong mặt phẳng tọa độ Oxy, cho tam giác ABC có các đỉnh A(6;3), B(3;6) và C(1;-2). a) Tìm tọa độ điểm D sao cho ABCD là hình bình hành. b) Tìm tọa độ điểm E sao cho tam giác ABE vuông cân tại A.
Đề thi HK1 Toán 10 năm 2019 - 2020 trường THPT Phú Lâm - TP HCM
Nhằm giúp các em học sinh lớp 10 có tư liệu ôn tập để chuẩn bị cho kỳ thi học kì 1 môn Toán 10, sưu tầm và chia sẻ đến các em nội dung đề thi + đáp án + lời giải chi tiết đề thi HK1 Toán 10 năm học 2019 – 2020 trường THPT Phú Lâm, thành phố Hồ Chí Minh. Trích dẫn đề thi HK1 Toán 10 năm 2019 – 2020 trường THPT Phú Lâm – TP HCM : + Trong mặt phẳng (Oxy) cho ba điểm A(-1;2), B(-1;-1), C(4;-1). a) Chứng minh rằng tam giác ABC vuông tại B. b) Tính diện tích của tam giác ABC. c) Tìm tọa độ trọng tâm G của tam giác ABC. + Cho phương trình mx^2 – (2m + 1)x + m – 4 = 0. Tìm m để phương trình có hai nghiệm phân biệt x1, x2 sao cho x1^2 + x2^2 = 15. + Cho hình vuông ABCD có cạnh bằng 2a. Hãy tính AC.AD.
Đề thi HK1 Toán 10 năm 2019 - 2020 trường THPT Nguyễn Thị Minh Khai - TP HCM
Nhằm giúp các em học sinh lớp 10 có tư liệu ôn tập để chuẩn bị cho kỳ thi học kì 1 môn Toán 10, sưu tầm và chia sẻ đến các em nội dung đề thi + đáp án + lời giải chi tiết đề thi HK1 Toán 10 năm học 2019 – 2020 trường THPT Nguyễn Thị Minh Khai, thành phố Hồ Chí Minh. Trích dẫn đề thi HK1 Toán 10 năm 2019 – 2020 trường THPT Nguyễn Thị Minh Khai – TP HCM : + Giải các phương trình và hệ phương trình sau. + Tìm giá trị tham số m sao cho phương trình 9m^2.x – 1 = x – 3m có nghiệm tùy ý. + Tìm giá trị nhỏ nhất của hàm số y = 9x + (3x + 1)/(x – 1) với x > 1.
Đề thi HK1 Toán 10 năm 2019 - 2020 trường THPT Tân Phong - TP HCM
Nhằm giúp các em học sinh lớp 10 có tư liệu ôn tập để chuẩn bị cho kỳ thi học kì 1 môn Toán 10, sưu tầm và chia sẻ đến các em nội dung đề thi + đáp án + lời giải chi tiết đề thi HK1 Toán 10 năm học 2019 – 2020 trường THPT Tân Phong, thành phố Hồ Chí Minh. Trích dẫn đề thi HK1 Toán 10 năm 2019 – 2020 trường THPT Tân Phong – TP HCM : + Cho ∆ABC có trung tuyến CM. Trên đường thẳng AC lấy điểm N sao cho NA = 2NC. Gọi K là trung điểm MN. Phân tích vecto AK theo AB, AC. + Trong mặt phẳng Oxy cho E(-2;-3); F(3;7); G(0;3); H(-4;-5), chứng minh rằng hai đường thẳng EF và GH song song với nhau. + Trong mặt phẳng Oxy, cho tam giác ∆ABC có A(−1;2); B(3;7); C(0;3). Tìm D sao cho ABCD là hình bình hành.