Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề tuyển sinh môn Toán năm 2020 2021 trường THPT chuyên ĐHSP Hà Nội

Nội dung Đề tuyển sinh môn Toán năm 2020 2021 trường THPT chuyên ĐHSP Hà Nội Bản PDF - Nội dung bài viết Đề tuyển sinh môn Toán năm 2020-2021 trường THPT chuyên ĐHSP Hà Nội Đề tuyển sinh môn Toán năm 2020-2021 trường THPT chuyên ĐHSP Hà Nội Ngày 14 tháng 07 năm 2020, trường Trung học Phổ thông chuyên Đại học Sư Phạm Hà Nội đã tổ chức kỳ thi tuyển sinh vào lớp 10 môn Toán cho năm học 2020-2021. Đề thi gồm 02 trang với 05 bài toán dạng tự luận, thời gian làm bài là 120 phút. Đề tuyển sinh lớp 10 môn Toán năm 2020-2021 của trường THPT chuyên ĐHSP Hà Nội được thiết kế cho mọi thí sinh dự thi vào trường chuyên. Trong đề, có những bài toán thú vị như: Hai ô tô cùng khởi hành từ A đi B trên quãng đường 120 km. Ô tô thứ nhất chạy nhanh hơn ô tô thứ hai 10 km/giờ và đến đích sớm hơn 0,4 giờ. Hãy tính vận tốc của mỗi ô tô. Bác An muốn làm cửa sổ khuôn gỗ hình nửa hình tròn phía trên và hình chữ nhật phía dưới. Hãy giúp bác An tính độ dài các cạnh của hình chữ nhật để có diện tích lớn nhất. Cho đường tròn (O) và một điểm A nằm ngoài đường tròn. Kẻ tiếp tuyến AB với (O) và đường kính BC. Chứng minh các mệnh đề liên quan ABCD. Đề tuyển sinh môn Toán năm 2020-2021 trường THPT chuyên ĐHSP Hà Nội mang đến những bài toán thú vị và thách thức cho các thí sinh dự thi. Chúc các em đạt kết quả cao!

Nguồn: sytu.vn

Đọc Sách

Đề tuyển sinh lớp 10 THPT môn Toán (chuyên) năm 2022 - 2023 sở GDĐT Bình Thuận
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 THPT công lập môn Toán (lớp 10 chuyên Toán – hệ số 2) năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Bình Thuận; kỳ thi được diễn ra vào thứ Sáu ngày 10 tháng 06 năm 2022. Trích dẫn đề tuyển sinh lớp 10 THPT môn Toán (chuyên) năm 2022 – 2023 sở GD&ĐT Bình Thuận : + Hai bạn An và Bình đang so về số lượng những viên bi mà hai bạn hiện có. An nói với Bình rằng: “Nếu bạn cho tôi một số viên bi từ túi của bạn thì tôi sẽ có số viên bi gấp 6 lần số viên bi của bạn. Còn nếu tôi cho bạn số viên bi như thế, số viên bi của bạn sẽ bằng 1/3 số viên bi của tôi”. Hỏi số viên bi ít nhất mà bạn An có thể có là bao nhiêu? + Cho đường tròn tâm O nội tiếp tam giác ABC, tiếp xúc với các cạnh AB, AC lần lượt tại D và E. Gọi I là tâm đường tròn nội tiếp tam giác ADE. a) Chứng minh A, I, O thẳng hàng và I thuộc đường tròn (O). b) Các phân giác trong của các góc B và C cắt đường thẳng DE lần lượt tại M và N. Chứng minh tứ giác BCMN nội tiếp và tam giác BMC vuông. + Người ta viết các số nguyên 1, 2, 3, 4, 5, 6, 7, 8 lên các đỉnh của một bát giác lồi sao cho tổng các số ở mỗi ba đỉnh liên tiếp không nhỏ hơn k với k nguyên dương. Tìm giá trị lớn nhất của k.
Đề tuyển sinh lớp 10 chuyên môn Toán (chuyên) 2022 - 2023 sở GDĐT Gia Lai
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 chuyên môn Toán (chuyên) năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Gia Lai; kỳ thi được diễn ra vào sáng thứ Sáu ngày 10 tháng 06 năm 2022. Trích dẫn đề tuyển sinh lớp 10 chuyên môn Toán (chuyên) 2022 – 2023 sở GD&ĐT Gia Lai : + Tìm một đa thức bậc ba P(x) với hệ số nguyên nhận x là một nghiệm và P(1) = -6. + Tìm tất cả các số nguyên x, y thỏa mãn: x2y2 – 2x2y + 3×2 + 4xy – 4x + 2y2 – 4y – 1 = 0. + Cho tam giác ABC nhọn nội tiếp đường tròn (O), kẻ ba đường cao AD, BE, CF cắt nhau tại H, lấy điểm M trên cung nhỏ BC (M khác B và C). Gọi P là điểm đối xứng với M qua AB. a) Chứng minh: APB = ACB và tứ giác AHBP nội tiếp một đường tròn. b) Chứng minh H là tâm đường tròn nội tiếp tam giác FDE. c) Tìm giá trị nhỏ nhất của biểu thức T.
Đề tuyển sinh lớp 10 THPT môn Toán năm 2022 - 2023 sở GDĐT Yên Bái
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 Trung học Phổ thông môn Toán năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Yên Bái; đề thi mã đề 008 gồm 04 trang với 50 câu hỏi và bài toán hình thức trắc nghiệm, thời gian học sinh làm bài thi là 90 phút (không kể thời gian phát đề); kỳ thi được diễn ra vào ngày 07 tháng 06 năm 2022. Trích dẫn đề tuyển sinh lớp 10 THPT môn Toán năm 2022 – 2023 sở GD&ĐT Yên Bái : + Cho đường tròn (O) đường kính AB = 2/3cm và C là điểm chính giữa của cung AB. Cung AmB có tâm C và bán kính CA (hình vẽ). Diện tích phần gạch chéo bằng? + Từ hai vị trí A và B của một tòa nhà, người ta dùng một dụng cụ quan sát đỉnh C của ngọn núi (hình vẽ). Biết rằng chiều cao AB của tòa nhà là 70m, phương nhìn AC tạo với phương ngang góc 30°, phương nhìn BC tạo với phương ngang góc 15°30′. Ngọn núi đó có chiều cao so với mặt đất gần với kết quả nào sau đây nhất? + Cho hình bình hành ABCD (A > 90°). Gọi M, N, P lần lượt là hình chiếu của C lên AD, DB và AB. Biết MN = 5 và NP = 4. Độ dài đoạn CN gần với kết quả nào sau đây nhất?
Đề tuyển sinh lớp 10 THPT môn Toán năm 2022 - 2023 sở GDĐT Thái Bình
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Thái Bình. Trích dẫn đề tuyển sinh lớp 10 THPT môn Toán năm 2022 – 2023 sở GD&ĐT Thái Bình : + Cho hệ phương trình với m là tham số. Giải hệ phương trình với m = 1. 2) Chứng minh rằng với mọi giá trị của m thì hệ phương trình luôn có nghiệm duy nhất (x;y). Tìm giá trị lớn nhất của biểu thức: S = x + y. + Trong mặt phẳng toạ độ Oxy cho parabol (P): y = x2 và đường thẳng (d): y = x + 2. 1) Tìm toạ độ hai giao điểm A và B của (d) với (P). 2) Gọi (c) là đường thẳng đi qua điểm C(-1;4) và song song với đường thẳng (d). Viết phương trình đường thẳng (c). + Từ điểm M nằm ngoài đường tròn (O;R) kẻ tiếp tuyến MA (A là tiếp điểm) và cát tuyến MBC không đi qua tâm O (điểm B nằm giữa hai điểm M và C). Gọi H là trung điểm BC. Đường thẳng OH cắt đường tròn (O;R) tại hai điểm N và K (trong đó điểm K thuộc cung BAC). Gọi D là giao điểm của AN và BC. a) Chứng minh tứ giác AKHD là tứ giác nội tiếp. b) Chứng minh: NAB = NBD và NB2 = NA.ND. c) Chứng minh rằng khi đường tròn (O;R) và điểm M cố định đồng thời cát tuyến MBC thay đổi thì điểm D nằm trên một đường tròn cố định.