Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Tổng ôn tập TN THPT 2021 môn Toán Hàm số lũy thừa - mũ - logarit

Tài liệu gồm 168 trang, được tổng hợp bởi thầy giáo Nguyễn Bảo Vương, tuyển tập câu hỏi và bài tập trắc nghiệm chuyên đề hàm số lũy thừa, hàm số mũ và hàm số logarit, có đáp án và lời giải chi tiết. Các câu hỏi và bài tập được trích từ các đề thi thử tốt nghiệp THPT năm 2021 môn Toán của các trường THPT và sở GD&ĐT trên cả nước, với mục đích giúp các em học sinh rèn luyện, rà soát kiến thức chủ đề Giải tích 12 chương 2, trước khi bước vào kỳ thi tốt nghiệp THPT 2021 môn Toán và các kỳ thi tuyển sinh Đại học – Cao đẳng. Mục lục tài liệu tổng ôn tập TN THPT 2021 môn Toán: Hàm số lũy thừa – mũ – logarit: 1. Mức độ nhận biết: 133 câu. + Câu hỏi và bài tập (Trang 01). + Đáp án và lời giải chi tiết (Trang 13). 2. Mức độ thông hiểu: 111 câu. + Câu hỏi và bài tập (Trang 38). + Đáp án và lời giải chi tiết (Trang 50). 3. Mức độ vận dụng thấp: 61 câu. + Câu hỏi và bài tập (Trang 80). + Đáp án và lời giải chi tiết (Trang 87). 4. Mức độ vận dụng cao: 74 câu. + Câu hỏi và bài tập (Trang 112). + Đáp án và lời giải chi tiết (Trang 121). Xem thêm : Tổng ôn tập TN THPT 2021 môn Toán: Ứng dụng đạo hàm và khảo sát hàm số

Nguồn: toanmath.com

Đọc Sách

Tuyển tập mũ và logarit trong các đề thi thử môn Toán 2018 có đáp án - Nguyễn Nhanh Tiến (Phần 1)
Tài liệu gồm 14 trang tuyển chọn 106 bài toán chủ đề mũ và logarit trong các đề thi thử môn Toán 2018, đề khảo sát chất lượng giữa HK1 Toán 12 và một số bài toán chọn lọc, tài liệu được tổng hợp và biên soạn bởi thầy Nguyễn Hữu Nhanh Tiến, các bài tập đều có đáp án. Trích dẫn tài liệu : + (Toán học tuổi trẻ Tháng 10 2017). Cho hai hàm số f(x) = log2 x, g(x) = 2^x. Xét các mệnh đề sau: (I). Đồ thị hai hàm số đối xứng nhau qua đường thẳng y = x (II). Tập xác định của hai hàm số trên là R (III). Đồ thị hai hàm số cắt nhau tại đúng 1 điểm (IV). Hai hàm số đều đồng biến trên tập xác định của nó Có bao nhiêu mệnh đề đúng trong các mệnh đề trên? A. 2   B. 3   C. 1   D. 4 [ads] + (Khảo sát giữa kì 1 Chuyên ĐH Vinh). Cho α là một số thực dương khác 1. Có bao nhiêu mệnh đề đúng trong các mệnh đề sau: 1. Hàm số y = logα x có tập xác định là D = (0; +∞) 2. Hàm số y = logα x là hàm đơn điệu trên khoảng (0; +∞) 3. Đồ thị hàm số y = logα x và đồ thị hàm số y = α^x đối xứng nhau qua đường thẳng y = x 4. Đồ thị hàm số y = logα x nhận Ox là một tiệm cận A. 4   B. 1   C. 3   D. 2 + (Giữa học kì 1 lớp 12 Chuyên Lê Hồng Phong – Nam Định). Cho hai hàm số y = f(x) = loga x và y = g(x) = a^x. Xét các mệnh đề sau: I. Đồ thị hàm số f(x) và g(x) luôn cắt nhau tại một điểm II. Hàm số f(x) + f(x) đồng biến khi a > 1, nghịch biến khi 0 < a < 1 III. Đồ thị hàm số f(x) nhận trục Oy làm tiệm cận IV. Chỉ có đồ thị hàm số f(x) có tiệm cận Số mệnh đề đúng là: A. 1   B. 2   C. 3   D. 4 Lưu ý :  Bạn đọc có thể tìm kiếm lời giải chi tiết bài tập mũ và logarit có trong tài liệu này tại chuyên mục đề thi thử môn Toán.
Hướng dẫn giải các bài toán về hàm số lũy thừa, mũ và logarit trong đề thi THPT QG 2017 - Dương Trác Việt
Tài liệu gồm 16 trang cung cấp một số cách giải quyết những bài tập về hàm số lũy thừa, mũ và logarit trong đề thi THPT Quốc Gia 2017 môn Toán. Bài viết ưu tiên đề cập loạt kỹ thuật giải nhanh theo định hướng trắc nghiệm, các câu hỏi vận dụng cao sẽ được trình bày chi tiết theo lối tự luận truyền thống.
Phân loại câu hỏi chuyên đề khảo sát hàm số và mũ - logarit - Lê Minh Cường
Tài liệu gồm 90 trang với 707 bài toán trắc nghiệm có đáp án thuộc các chuyên đề khảo sát hàm số và hàm số lũy thừa – mũ – logarit. Khảo sát hàm số 1.1 Đơn điệu 1.2 Cực trị 1.3 Min-Max 1.4 Tiệm cận 1.5 Đồ thị – Tương giao 1.6 Tiếp tuyến [ads] Hàm số lũy thừa – mũ – lôgarit 2.1 Hàm số lũy thừa 2.2 Công thức lôgarit 2.3 Hàm số mũ – lôgarit 2.4 Phương trình mũ – lôgarit 2.5 Bất phương trình mũ – lôgarit Các bài toán được phân loại theo mức độ nhận biết, thông hiểu, vận dụng thấp và vận dụng cao.
100 câu trắc nghiệm hàm số lũy thừa, mũ và logarit - Bùi Thế Việt
Tài liệu gồm 12 trang với 100 câu hỏi trắc nghiệm chọn lọc về chủ đề hàm số lũy thừa, hàm số mũ và hàm số logarit.