Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Bài tập trắc nghiệm giới hạn có lời giải chi tiết - Nguyễn Phú Khánh, Huỳnh Đức Khánh

Tài liệu gồm 58 trang tuyển chọn và giải chi tiết các bài tập trắc nghiệm giới hạn trong chương trình Đại số và Giải tích 11 chương 4, tài liệu bao gồm nhiều bài tập thuộc mức độ vận dụng được chia thành nhiều dạng toán khác nhau. Tài liệu được biên soạn bởi thầy Nguyễn Phú Khánh và thầy Huỳnh Đức Khánh. Nội dung tài liệu : Bài 01. Giới hạn của dãy số + Vấn đề 1. Dãy số dạng phân thức + Vấn đề 2. Dãy số chứa căn thức + Vấn đề 3. Dãy số chứa hàm lũy thừa + Vấn đề 4. Tổng của cấp số nhân lùi vô hạn Bài 02. Giới hạn của hàm số + Vấn đề 1. Dãy số có giới hạn hữu hạn + Vấn đề 2. Giới hạn một bên + Vấn đề 3. Giới hạn tại vô cực + Vấn đề 4. Dạng vô định 0/0 + Vấn đề 5. Dạng vô định ∞/∞ + Vấn đề 6. Dạng vô định ∞ – ∞ + Vấn đề 7. Dạng vô định 0.∞ [ads] Bài 03. Hàm số liên tục + Vấn đề 1. Xét tính liên tục của hàm số + Vấn đề 2. Hàm số liên tục tại một điểm + Vấn đề 3. Hàm số liên tục trên một khoảng + Vấn đề 4. Số nghiệm của phương trình trên một khoảng Xem thêm :  Bài tập trắc nghiệm tổ hợp và xác suất có lời giải chi tiết – Nguyễn Phú Khánh, Huỳnh Đức Khánh (Đại số và Giải tích 11 chương 2)

Nguồn: toanmath.com

Đọc Sách

Bài tập trắc nghiệm lũy thừa - mũ - lôgarit vận dụng cao
Tài liệu gồm 127 trang, tuyển chọn các bài tập trắc nghiệm lũy thừa – mũ – lôgarit vận dụng cao, có đáp án và lời giải chi tiết, giúp học sinh lớp 12 tham khảo khi học chương trình Toán 12 phần Giải tích chương 2: Hàm Số Lũy Thừa, Hàm Số Mũ Và Hàm Số Logarit. HÀM SỐ LŨY THỪA, HÀM SỐ MŨ VÀ HÀM SỐ LÔGARIT. – Phần 1. Tính chất và các phép toán. – Phần 2. Đồ thị. – Phần 3. Dãy lôgarit. – Phần 4. Cực trị nghiệm. – Phần 5. Bài toán tìm GTLN – GTNN. ỨNG DỤNG HÀM SỐ MŨ – HÀM SỐ LÔGARIT. – Phần 1. Một số bài toán áp dụng. + Dạng 1. Áp dụng công thức có sẵn. + Dạng 2. Sử dụng công thức lãi kép. + Dạng 3. Thiết lập công thức. – Phần 2. Bài toán lãi suất. + Dạng 1. Cho vay một lần (lãi kép). + Dạng 2. Gửi tiền đầu mỗi định kỳ (gửi tiết kiệm). + Dạng 3. Vay trả góp. + Dạng 4. Bài tập tổng hợp. PHƯƠNG TRÌNH MŨ VÀ PHƯƠNG TRÌNH LÔGARIT. – Phần 1. Phương trình mũ – phương trình lôgarit. – Phần 2. Phương trình mũ chứa tham số. – Phần 3. Phương trình lôgarit chứa tham số.
Một số bài tập vận dụng cao mũ và logarit có đáp án và hướng dẫn giải
Tài liệu gồm 27 trang, được biên soạn bởi thầy giáo Phạm Văn Nghiệp, tuyển chọn một số bài tập vận dụng cao mũ và logarit có đáp án và hướng dẫn giải chi tiết, giúp học sinh lớp 12 tham khảo khi học chương trình Giải tích 12 chương 2.
Các dạng bài tập lũy thừa, mũ và lôgarit
Tài liệu gồm 49 trang, được biên soạn bởi quý thầy, cô giáo giảng dạy bộ môn Toán học tại trường THPT Marie Curie, quận 3, thành phố Hồ Chí Minh, phân dạng và tuyển chọn các bài toán trắc nghiệm + tự luận chuyên đề lũy thừa, mũ và lôgarit, giúp học sinh lớp 12 tự học chương trình Giải tích 12 chương 2. DẠNG 1. CÔNG THỨC LŨY THỪA. DẠNG 2. CÔNG THỨC LOGARIT. DẠNG 3. PHƯƠNG TRÌNH MŨ VÀ LÔGARIT. DẠNG 4. BẤT PHƯƠNG TRÌNH MŨ VÀ LÔGARIT. DẠNG 5. TẬP XÁC ĐỊNH. DẠNG 6. ĐẠO HÀM. DẠNG 7. TÍNH CHẤT ĐƠN ĐIỆU VÀ ĐỒ THỊ. DẠNG 8. LÃI SUẤT.
Bài tập hàm số lũy thừa, hàm số mũ và hàm số logarit - Diệp Tuân
Tài liệu gồm 420 trang, được biên soạn bởi thầy giáo Diệp Tuân, phân dạng và tuyển chọn các bài tập hàm số lũy thừa, hàm số mũ và hàm số logarit (Toán 12 phần Giải tích chương 2). CHƯƠNG II. HÀM SỐ LŨY THỪA, HÀM SỐ MŨ VÀ HÀM SỐ LÔGARIT 1. 1. LŨY THỪA. A. Lý thuyết 1. B. Phân dạng, bài tập minh họa và câu hỏi trắc nghiệm 4. Dạng 1. Biến đổi biểu thức liên quan và so sánh 2. Dạng 2. Rút gọn biểu thức 10. C. Câu hỏi trắc nghiệm 17. Dạng 1. Lũy thừa với số mũ hữu tỉ 18. Dạng 2. Lũy thừa với số mũ vô tỉ 26. 2. HÀM SỐ LŨY THỪA. A. Lý thuyết 31. B. Phân dạng, bài tập minh họa và câu hỏi trắc nghiệm 32. Dạng 1. Tập xác định của hàm số lũy thừa 32. Dạng 2. Tính đạo hàm, tìm giá trị lớn nhất và giá trị nhỏ nhất 35. + Loại 1. Tính đạo hàm của hàm số lũy thừa 35. + Loại 2. Tính giá trị lớn nhất và giá trị lớn nhất của hàm số lũy thừa 36. Dạng 3. Tính chất đồ thị của hàm số lũy thừa 41. C. Câu hỏi trắc nghiệm trong các đề thi đại học 46. 3. LÔGARIT. A. Lý thuyết 57. B. Phân dạng, bài tập minh họa và câu hỏi trắc nghiệm 58. Dạng 1. Tập xác định của hàm số lôgarit 58. Dạng 2. Rút gọn biểu thức 66. Dạng 3. Tính giá trị của biểu thức, chứng minh đẳng thức 71. Dạng 4. Khái niệm, tính chất và so sánh 81. Dạng 5. Biểu diễn một lôgarit theo một lôgarit khác cơ số cho trước 90. 4. HÀM SỐ MŨ VÀ HÀM SỐ LÔGARIT. A. Lý thuyết 102. B. Phân dạng, bài tập minh họa và câu hỏi trắc nghiệm 103. Dạng 1. Tập xác định của hàm số lôgarit 103. Dạng 2. Tính giá trị của biểu thức khi biết một điều kiện 115. Dạng 3. Tính đạo hàm, tìm giá trị lớn nhất và giá trị nhỏ nhất 118. Dạng 4. Sự đồng biến và nghịch biến của hàm số mũ và hàm số lôgarit 157. Dạng 5. Tìm cực trị của hàm số mũ và hàm số lôgarit 168. Dạng 6. Tính chất và đồ thị của hàm số mũ và hàm số lôgarit 170. Dạng 7. Bài toán thực tế, lãi suất 184. + Loại 1. Bài toán lãi kép 184. + Loại 2. Bài toán gửi tiết kiệm hàng tháng 192. + Loại 3. Bài toán trả góp hàng tháng 195. + Loại 4. Bài toán tăng trưởng 198. 5. PHƯƠNG TRÌNH MŨ VÀ PHƯƠNG TRÌNH LÔGARIT. I. PHƯƠNG TRÌNH MŨ. A. Lý thuyết 203. B. Phân dạng, bài tập minh họa và câu hỏi trắc nghiệm 203. Dạng 1. Phương trình Mũ cơ bản và phương pháp đưa về cùng cơ số 203. Dạng 2. Phương pháp đặt ẩn phụ 211. Dạng 3. Phương pháp Lôgarit hóa 222. Dạng 4. Phương pháp tích 229. Dạng 5. Phương pháp đặt ẩn phụ không hoàn toàn, phương pháp đồ thị 232. Dạng 6. Phương pháp sử dụng tính đơn điệu của hàm số 235. Dạng 7. Phương trình chứa tham số m 235. + Loại 1. Tìm điều kiện của m để phương trình có nghiệm 241. + Loại 2. Tìm điều kiện của m để phương trình có n nghiệm trên [a;b] 246. + Loại 3. Tìm điều kiện của m để phương trình có nghiệm thỏa mãn điều kiện 253. II. PHƯƠNG TRÌNH LÔGARIT. A. Lý thuyết 263. B. Phân dạng, bài tập minh họa và câu hỏi trắc nghiệm 263. Dạng 1. Phương trình Lôgarit cơ bản và phương pháp đưa về cùng cơ số 263. Dạng 2. Phương pháp đặt ẩn phụ 289. Dạng 3. Phương pháp mũ hóa Lôgarit 304. Dạng 4. Phương pháp tích 311. Dạng 5. Phương pháp đồ thị và hàm đặt trưng 315. Dạng 6. Phương trình chứa tham số m 321. 6. BẤT PHƯƠNG TRÌNH MŨ VÀ BẤT PHƯƠNG TRÌNH LÔGARIT. I. BẤT PHƯƠNG TRÌNH MŨ. A. Lý thuyết 344. B. Phân dạng, bài tập minh họa và câu hỏi trắc nghiệm 344. Dạng 1. Bất phương trình Mũ cơ bản và phương pháp đưa về cùng cơ số 344. Dạng 2. Phương pháp đặt ẩn phụ 356. Dạng 3. Phương pháp Lôgarit hóa và bất phương trình tích 365. Dạng 4. Phương pháp sử dụng tính đơn điệu của hàm số 368. Dạng 5. Bất phương trình chứa tham số m 370. II. BẤT PHƯƠNG TRÌNH LÔGARIT. A. Lý thuyết 382. B. Phân dạng, bài tập minh họa và câu hỏi trắc nghiệm 382. Dạng 1. Bất phương trình Lôgarit cơ bản và phương pháp đưa về cùng cơ số 382. Dạng 2. Phương pháp đặt ẩn phụ 406. Dạng 3. Phương pháp biến đổi về phương trình tích 414.